TREMADOC TRILOBITES FROM THE FLORENTINE VALLEY FORMATION, TIM SHEA AREA, TASMANIA

By P. A. Jell* and B. Stait

* Department of Inventebrate Fossils, Museum of Victoria, 285-321 Russell Streel, Melbourne,
Victoria 3000.
+ Department of Cieotogy, Universily of Tasmana, G.P.O. Box 252C, Hobant, Tasmania 7001.

Abstract

Tritobites from several homizons in the Florentine Valley Formation of the liin Shea area west of Maydera, southuesten Tamania are deseribed and assigned bate Tremadoe to possibly carly Atenig ages. Their agen approximate the Lancetieldian Lat.5 cone of Psgraphus, La2 and possibly Lals, Tana described are Hystricurts penchiensis Lu, H. lewisi (Kobayashi), H. sp. ct. H. robiushus Ross, Tanvbregma tasmaniensis zen. el sp. nov,. Chosenia adamsensis sp. nov., Asaphellus sp. ©f. A. trinodosus Chang, Megistaspis (Ekeraspis) euclides (Walooll), Dikelokephalinta asiatica Kobayashi, Asaphopsondes florentinensis (Etheridge), Scotoharpes lauriei sp. nov., Pilehiidac gen. el sp. nov., Pilekiasp. nov, Protophomerops hamavitus sp. nov, and P^{\prime}. sp. cf. P. punctatus Kobayash.

Introduction

Trilobites of the Florentine Valley Formation in southwestern Tasmania received scant attention until recently. Etheridge (1905) described Dikelocephalus florentinensis and Niole? sp. ind. from the Florentine River Valley near The Gap (fide Corbelt \& Banks, 1974). Kobayashi (1936) reassigned the species florentinensis of Etheridge io Asaphopsis Mansuy, 1920. Kobayashi (1940) deseribed four species liom a railway cutting at Junce east ol the present town of Maydena neas the siding of litzgerald (fide Lewis, 1940, p. 35); his two species of Asaphopsis are considered synonyms of Etheridge's A. floremtinensis, his two species of Tasmanaspis are considered synonymous and Tasmanaspis is considered a junior subjective synonym of Hystricurus Raymond, 1913. He assigned the fauna to the Lower Ordovician and it may now be correlated with the OT5 10 OT7 time interval as diseussed below.

Corbett and Banks (1974) illustated a number of trilobites of the Florentine Valley Formation from The Gap on the Florentine Valley Road and from 5 Road to the southwest. Although they applied numerous speeifie names and left many other specimens in open nomenclature we consider that they were deceived, by the subileties of the deformation and failure to employ latex casting on the trilobites, into oversplitting the eollection; int our opinion all their hystrieurid specimens are relerable to H. lewisi (Kobayashi, 1940), all the asaphopsid speeimens to Asaphopsoides floren-
tinensis, the "Asaphellus" lewisi to Asaphellus sp. cf. A. trinodosns Chang, and the Cybelopsis sp. to Protopliomerops hamaxitus sp. nov.

Stait and Laurie (1980) provided identifications for new trilobite faunas found in sequence along the Gordon River Road on the western side of The Needles. Our paper along with that of Lauric (1980) provides the detailed palacontology for the diseoveries of Stait and Laurie (1980) and leads to several important revisions of ranges and nomenelature. Findings herein are consistent with the assertions mady by Stait and Lauric (1980) about correlations and divisions of the faumas but limitations are placed on the ability 10 subdivide the faunas referred 10 by Stait and Laurie (1980) as Assemblages 5, 6, and 7 , until more sections are available to confirm previous proposals.

Illustrated materiat is housed in the Department of Geology, University of Tasmania (prefix UTGD), the Tasmanian Museum (preflx Z), and accessory collections are housed in those institutions and the palaeontological eolleetions of the Museum of Vietoria.

We are grateful to Penny Green University ol Tasmania, and Annette Jell for euratorial assistanec, to Penny Clark for pilinting the photographs from negatives made by the senior author and to Heather Martin for typing the manuseript.

Localities and trilobite faunas (Fig. 1)

The localities from which trilobites are deseribed are numbered on the fossil locality
register of the Museum of Victoria (prefix NMVPL).

NMVPL1600, 1601, 1602 occur in the yellow siltstone (2nd lithology from base), dark grcy calcareous siltstone, and yellow siltstones (near top) respectively, of the Pontoon Hill Siltstone Member (Stait \& Laurie, 1980) of the Florentine Valley Formation on the Gordon River Road (19 km west of Maydena), where the member extends on the State Grid Reference - Wedge 8112 from 535, 694 to 529 , 685.

NMVPL1600 Hystricurus penchiensis Lu, 1976
Tanybregma lusmaniensis gen. et sp. nov.
Dikelokephalina asiatica Kobayashi, 1934
Pilekia sp. nov.
NMVPL1601 Hystricurus lewisi (Kobayashi, 1940)
Asaphopsoides florentinensis (Etheridge, 1905)

Protopliomerops hamaxitus sp. nov.
Megistaspis (Ekeraspis) cuclides (Walcou, 1925)

Pilekiidac gen. et sp. nov.
NMVPL 1602 Hystricurus lewisi
Asaphopsoides florentinensis
Protopliomerops hamaxitus
Hystricurus sp. cf. H. robustus Ross, 1951
Chosenia adamsensis sp. nov.
Asaphellus sp. cf. A. Irinodosus Chang, 1949
Scotoharpes lauriei sp. nov.
Protopliomerops sp. cf. P. punctatus Kobavashi, 1934

NMVPL182 and 183. Lower and upper beds respectively at The Gap on Australian Newsprint Mills road into the Florentine Valley from Maydena (see Corbett \& Banks, 1974, fig. 4; Stait \& Laurie, 1980, fig. 1). Trilobite faunas are identical at the two localities.

Hystricurus lewisi
Asaphopsoides florentinensis
Protopliomerops hamaxitus
5 Road. this locality was detailed by Corbett and Banks (1974, fig. 4, locality 3) as coordinates $440,400 \mathrm{E} .742,500 \mathrm{~N}$. on 5 Road in the Florentine Valley.

Hystricurus lewisi
Asaphopsoides florentinensis
Protopliomerops hamaxitus
Adams Falls. Clear Hill Road 400 m east of Adams Falls near junction with Adamsfield Track. State Grid Rcference-Wedge 8112: 423, 699.

Hystricurus sp. cf. II. robustus Chosenia adamsensis
Protopliumerops hamaxilus
Asaphellus sp. cf. A. trinodosus
Asaphopsoides florentinensis
Age
Correlation ol shelly Tremadoe faunas is relatively tentative and considerable disagreement still cxists with relationships to a standard seale still a long way off; for example Chugaeva and Apollonov (1982, p. 82) place the shelly fauna zones D, E, and F (of Ross (1951) and Hintze (1953)) in the Arenig whereas Miller et al. (1982, p. 177) in the same publication place the same zones in the Tremadoc, and evidence for either does not seem strong.

The fauna from NMVPL 1600 (Assemblage 3 of Stait and Lauric (1980) and OT3 of Banks and Burrett (1980)) contains Psigraptus which has been used to correlate with the La 1.5 zone of Psigraptus of Cooper and Stewart (1979). The trilobites do not provide a distinctive correlation and although Dikelokephalina suggests correlation with the Dikelokephalina Beds of Kazakhstan (Chugaeva \& Apollonov, 1982), the Carranya Beds of the Canning Basin, Western Ausiralia (Legg, 1978), and the Clarkella zone of Korea (Kobayashi, 1934) such gencric level correlation should be avoided if possible and used only when a number of genera are involved. The medial Tremadoc age suggested by the graptolite is feasible but the implied contemporancity of the Digger 1sland Formation (Webby et al., 1981) is doubtful in light of comparison of the trilobite faunas (see discussion in Jell, 1985).

Sueceeding faunas of the Florentine Valley formation (Assemblages 4 to 7 of Stait and Laurie (1980) or OT4 to OT7 of Banks and Burrett (1980)) contain and are distinguished by Hystricurus lewisi, Asaphopsoides florentinensis, and Protopliomerops hamaxilus; various other species occur with them at different horizons. The fauna of OT5 may be distinguished from that of OT4 by the appearance of Chosenia, Asaphellus, and Scotoharpes but following more detailed examination of the faunas OT5 to OT7 may not be subdivided on the basis of contained trilobites. Moreover, the utility of a zonal

Figure 1. Sketch map of Maydena- Tim Shea area southwestern Tasmania showing fossil localities.
scheme based on faunas of the Florentine Valley Formation will depend on its applicability to other sections which are not yet known. Indeed difficulties of correlating the Digger Island Formation fauna (Jell, 1985) with this section suggest that use of the trilobite faunas to establish a biostratigraphy may be premature and detailed taxonomy of all known sections is necessary before a workable scheme can be established.

The trilobites of these assemblages are not inconsistent with the late Tremadoc to early Arenig age previously suggested (Laurie, 1980; Stait \& Lauric, 1980; Banks \& Burrett, 1980).

Preservation

The fossils are preserved as moulds in finegrained decalcified shale to fine sandstone of a variety of colours. There has been considerable distortion of the fossils at all localities but more so at some (e.g., NMVPL 1600 and Adams Falls) than at others (e.g., NMVPL182 and 5 Road). The fossils all appear to have lain in the bedding planes and distortion is generally in two dimensions with development ol slatey cleavage. Those fossils in decalcified nodules at NMVPL1601 and 1602 are much Icss deformed than others at the same localities in the shaly
beds. The distortion at NMVPL 1600 induced the tubercles on some hystricurid heads to become much more prominent and asymmetrical (PI. I, fig. 3) whereas in others it seems of have completely subdued the tuberculation (Pl. 1, fig. 1).

Although it may appear nonsense to place two pygidia (PI. 5, ligs 7 and 8) in the same species, the marked dimensional differences may best be explained as compression from different directions.

It is interesting to note that at NMVPL 1600 distortion is marked but there has been no fracture of the exoskeletons (even of the large llat Dikelokephalina asiatica) as there is at most other localities particularly in the large flat Asaphopsoides florentinensis. The state of preservation of the fossils removes any confidence in the use of any biometries so no measurements or reconstructions are included in the descriptions; sizes of individuals are indicated in plate explanations and most distinguishing features are not measurements.

Systematic palacontology

Terminology follows Harrington, Moore \& Stubblefield (1959) as far as possible; occipital ring is included in the glabella; all dimensions in
the satgittal or exsagital directions are diseussed in terms of length and all dimensions in the transverse direction are discussed in terms ol width (for example the anterior cranidial border whose sagital dimension is olten important in specific description is deseribed in terms ol long or short in our terminology).

Class Trilobita

Family HYSTRICURIDAE Hupe, I953
Hystricurus Raymond, 1913
Type species (by original designation): Bathyurus conicus Billings, 1859.

Hystricurus penchiensis Lu, 1976
Plate I, figures 1-15
Materiul: Holotype Nanking Institute ol Gieology and Palcontology No. 23885 (Lu, 1976, pl. 7, fig. 10), paratypes NIGP23886 to 23888 all Trom the Callograptus? faitzehoensis zone of the Yehli Formation in Lianning Province of northeastern China. Some fifty disassociated cranidia, pygidia, librigenae and thoracic segments as well as two arliculated specimens are available from NMVPLI 600 including the figured specimens UTGDI2250) to I22518.
Diagnosis: Member of Hystricurus with subquadrate glabella; relatively long preglabellar field (0.3 of cranidial length); palpebral lobe long (0.4 ol cranidial length), situated posteriorly, becoming wider posteriorly, defined by distinct palpebral lurrow parallel to margin of the narrow lobe; librigena with marginal terrace lines, with strong genal spine bearing extension ol border furrow down its midlinc. Pygidium with axis of lour rings and short, medially divided terminus reaching border furrow; pleural and interpleural furrows extending to border; border narrow in dorsal view, with high marginal band bearing strong parallel terrace lines; doublure narrow.
Description: Cranidium with coarse tubercular ornament on glabella and checks. Clabella without furrows, with straight parallel sides posteriorly, tapering gently over anterior half, with truncated anterior rounded on corners; occipital furrow and ring of about equal length,
with weak apodemal depressions in furrow laterally, with ring lapering laterally behind apodemal pits and passing across axial furrow as very low ridge into posteroproximal corner of fixed check, without median node or posterior spines on ring; axial furrow with clongate fossulae at anterolateral corners of glabella, shallowing over axis in front of glabella; preglabellar field weakly convex; anterior border furrow shallow, long, with gently sloping walls front and back, almost transverse, without ornament; anterior border short, wakly convex, without ornament, tapering laterally from near exsagittal line through sides of glabella as lacial suture cuts across it; interocular cheek wide, rising up from axial furrow but flat distally; palpebral furrow, running around both anterior and posterior ol palpebral lobe to cross facial suture and continue on librigena beneath cyc socle; palpebral lobe arcuate, almost semicircular, relatively long at 0.4 of cranidial length, sloping up abaxially, becoming wider posterior to the midength, without ornament: facial suture diverging forward from palpebral lobe in curve to widest point just behind border furrow, then curving strongly across border to anterior margin, running transverscly 「rom posterior of palpebral lobe to well beyond lateral extremity of palpebral lobe before turning sharply back for very short distance to posterior margin; posterior cephalic limb short and wide, without ornament, occupied mostly by well impressed transverse posterior border furrow of unilorm length, with short convex posterior border behind. Librigenal longer than wide, gently convex; with genal spine of more than half cranidial length, visual surface almost three times as long as wide (or rather high), standing almosi vertically, only weakly convex transverscly, apparently holochroal although lenses not clarly distinct; cye socle low, distinct, rim-like beneath visual surface, defined bclow by broad shallow furrow continuous lrom palpebral lurrow; genal field weakly convex, gently downsloping abaxially from sharp clange of slope at furrow bencath eye, with coarse tubercular ornament over adaxial hall (tubercles of two sizes) and extremely fine low radial caecal network extending from cye socle
to border; border furrow well impressed, rising stecply up onto border but smoothy up cheek, continuing down genat spine as merging lateral and posterior parts, not running around genal angle; posterior border furrow deeper and lateral border furrow deepening from just in front of genal angle back; border convex throughout becoming much narrower and more convex behind a point just in from of the genal angle, with continuous terrace lines parallel to the margin on anterior part but fading out at the same point the convexity of the border changes: genal spine not contimaing curve of cheek margin but ruming very slightly abaxially, with high convex rims on both sides of deep furrow rumning down its centre; doublure as wide as border, convex ventrally to enclose cylindrical space in border. Hypostome unknown.

Thorax of at least nine segments (no complete thorax is known); axial rings of minform lengh, each with median node; pleural furrows well impressed, beginning at the anterior margin in the axial furrow, occupying most of the length of the segment, lading oun down free pleura against back of wide short inclined facet; anterior and posterior pleural bands each with single row of lubercles; pleural lips with posterolateral points.

Pygidium transverse, with convex axis standing above less convex pleural areas; axis tapering slightly posteriorly; axial rings with prominent high luberele on anterior one and low lessprominent node on second, progressively shorter posteriorly, of uniform tength with short wide pseudoarticulating halfrings on first and second; terminus triangular, reaching down to posterior border furrow, divided sagittally into left and right lobes by distinet liurow deepest ameriorly; pleural areas with well impressed pleural and interpleural furrows; with anterior and posterior bands of each rib bearing a transverse row of small tubereles, with all furrows becoming directed more posteriorly lowards the posterior where they are ahmost exsagital; border extremely narrow in dorsal view, rim-like, of uniform width, defined by shatlow posteriorly tapering border furrow, with high marginal band bearing continuous parallel terace lines, with broad often barely
perceptible posteromedian indentation; doublure narow, extending in and then up to approael the dorsal exoskeleton beneath the border furrow and enclose cylindrical space within the border.
Remarks: The Tasmanian material is assigned 10) this Chinese species on the comparison with Lu's (1976, pl. 7, fig. 11) thattened specimen where the glabellar shape is identical with that of the Tasmanian specimens all of which ate flathened. Preglabellar, palpebral and oceipital strmetures are identieal and there sen be litte doubt about the specitic identity. Althongh the genal spine toohs shorter on La's (1976, pl, 7. fig. 12) specimen it seems likely that the ventral mould of the spine is incomplete and may go into the matris on the counterpart. The intermal mould of the pegidium ligured by Ludoes not allow adequate comparison but observable features are identical, when compared with Tasmanian py gidia of comparable size (e.g., Pl. 1. fig. 15). Li1 (1976) compared the Asian species 11 . Imegalops Kobayashi, 1934 and $/ 1$. gramosus Endo, 1935 bohl of which are distinguished by their narrower more rounded glabellar shape and shorter preglabeltar field. 11. Jlectimembrus Ross, 195 has precisely the genal pine structure of the Tasmanian specimens. Hystricurus wilsoni Gobbet1, 1960 is similar to \% penchiensis in mament as welt as in general arrangement of the crandium and pygidium. However, the Spitsbergen species and $/ 1$. flectimembrus from Utah may be distingnshed from H. penchiensis by the spines on the rear of the eranidimen and on the thoracic segments.

Hystricurus lewisi (Kobayashi, 1940)
Ptate 2, figmes 1-15; plate 3, figures 9, 10, 13
1940 Tusmumaspus lewisi Kobayashi, p. 65, pl. 11, ligs 3, 4.

1940 Iasmanuspes longus hobayashi, r. 66, 111.11, 19g. 5.
1974 Ifvericurtes paragenalatus Ross; Corbend © Banhs. pl. 1, lige 16, 20, pl. 2, lig. 11.
1974 Ifsisticurms sp. Corbell if Banhs, mol, ligs 21, 25.27. 11. 2, lig. 12.

1974 hyan icurd librigenace Corben \& Banhs, pl. 1, lig. i4
1980 /Ibsericurus lewisi (homayashi): Stail \& I auric, lig. 3, Appendix 1.
Holotype: Z 251 from 'railway cnlling 3.2 km west of Innee Railway Station' (i.e just cast of
present day town of Maydena) in the Florentine Valley Formation.
Other material: Some 80 to 100 disarticulated eranidia, libragenae, and pygidia from NMVPLI82, NMVPL1601, NMVPLI 602 and 5 Road including Z150 (holorype of Tasmanaspis longus), Z995, material figured by Corbett and Banks (1974), and material figured herein are present in the collections of the Tasmanian Museum, Department of Geology, University of Tasmania and the Museum of Victoria.
Diagnosis: Glabclla lapering forward, anteriorly rounded, extremely faint 1 p furrow; preglabellar field short, becoming longer with growth; palpebral lobes short, wide, highly arcuate; anterior sections of facial suture diverging to just behind border furrow then eutting across border diagonally over a short transverse distance; librigena with convex border bearing continuous marginal terrace lines ruming down proximal part of genal spine. Pygidium transverse; axis of four rings and short medially divided terminus without distinet posterior boundary; axial furrow extending almost to posterior border furrow; pleural arcas with sharp geniculation forming ridge parallel to margin some distance abaxial to border furrow; border and doublure quite narrow. Pygidium smooth but eephalon with fine tuberculate ornament becoming Icss obvious with growth.
Description: Small and convex for the genns with variable subdued ornament of pustules on all parts of exoskeleton except in furrows and on the border; cranidium with broadly eonvex glabella standing above ehceks; glabella with extremely vaguc suggestions of wide gentlyoblique 1p firrows (e.g., pl. 2, fig. 15, centre); axial furrow well impressed, sharper and deeper in fromt of glabella (probably indicating fossulae) and shallowing adjacent to glabellar lobe Ip; occipital ring short, flat in lateral profile, tapering laterally; oceipital furrow sharp and deep, with apodemal pits laterally but then shallowing to almost nothing adjaeent to axial furrow; preglabcllar field always short, or variable length depending on stage of growth but mostly on post-depositional distortion, downsloping forward itto well impressed
transverse border furrow; anterior border of uniform length, short, (may appear to be variable in length due to preservation - steeply upsloping forward was probably original attitude, appearing storter than on flattened ones), with line marginal terrace lines; eye lines barcly evident on some specimens; palpebral lobe relatively short, areuate, bulging laterally, flat to slightly downsloping abaxially, situated adjacent to midength of glabella; palpebral furrow poorly impressed medially but distinct at ends of palpebral lobe, not parallel to lobe margin but rather cutting across base of lobe, comtinuous around ends ol lobe onto free cheek beneath eye surface; posterior cephalic limb wide (glabella only 0.35 of basal cranidial widh), subtriangular in shape, with well impressed posterior border furrow becoming longer latcrally; posterior border becoming elongate abaxially, short and convex adaxially; facial suture rumning in fairly straight diagonal line from posterior of palpebral lobe to posterior border, then turning sharply back to margin.
Librigena downsloping abasially, visual surface vertical, nearly four times as long as high, gently convex in both anterior and dorsal profiles: eyc socle low, merely a rim beneath visual surface; furrow beneath eye socle very shallow but distinct without ornament, continuous with palpebral furrow of fixed cheek; genal ficld with ornament on adavial part decreasing towards border furrow, gently conves; border furrow well impressed but shallowing distinctly for short section just in front of genal angle, continuing down genal spine where posterior and lateral border furrows merge into one furrow for short distance; doublure as wide as border extending quite a distance forward beyond genal field, terminating forward on an oblique rostral suture.

Pygidium transverse, conves, apparently without ornament; axis of four rings and shori widely divided terminus, convex, standing above pleural areas; articulating half ring shori standing up high modially; axial lings each of uniform length, becoming shorter lowards posterior until fourth ring is extremely short rim; terminus represented by two lobes separated by wide medial depression, not clear-
ly distinguished posteriorly; axial furrow not impressed but expressed as change of slope from axis onto flat proximal part of plcural area, continuing posteriorly down steep slope of pygidium to finish near posterior border furrow (extension down posterior slope may be fourth interpleural furrow simply continuing line of axial furrow but this cannot be determined withoul knowing termination of axis which in H. penchiensis becomes much lower as it extends posteriorly towards the posterior border furrow); pleural area clearly divided by sharp geniculation forming prominent ridge parallel to margin a considerable distance inside the border furrow; adaxial part of pleural area Hat, crossed by four long gently sided pleural furrows and three (or four, depending on interpretation of posterior) short sharp interpleural furrows; pleural furrows cutting diagonally back across segment from axial furrow, finishing against ridge of geniculation; inlerpleural furrows continuing through gaps in geniculation ridge, rumning down steep outer slope almost to border furrow; outer part of pleural area sloping steeply down 10 border, smooth except for interpleural furows; border extremely marrow, tapering forward, merely a flange at base of steeply stoping pleural area, defined by poorly impressed border furrow at change of slope, with fine parallel continuous terrace lines along margin; doublure narrow, convex, leaving cylindrical space in border; articulating facet small sloping stecply abaxially; pygidium without ornament.
Remarks: Kobayashi (1940) nominated this species as the type for his genus Tasmanaspis and the holotype is an internal mould, refigured herein (PI. 2, fig. 2), of a medium sized cranidium. The features quoted by Kobayashi as distinguishing Tasmanaspis are not of gencric significance in the modern understanding of Hystricurus and the "concavo-convex curvature of the lrontal limb and rim" is considered to appear distinctive only by virtue of the preservation at the type locality. Tasmanaspis is undoubtedly a junior synonym of Hystricurus.
Angle of the lacial suture and elongate cranidium, quoted by Kobayashi (1940) as distinguishing Tasmanaspis longus from T.
lewisi are the result of lateral compression as opposed to sagittal compression in the type of H. lewisi. The eye ridge and length of occipital ring are not distinctive and the relative length of preglabellar area and position of palpebral lobe are not quoted accurately because Kobayashi's illustration of the type of H. lewisi is retouched in the left posterior region; the posterior cephalic limb is not preserved and the posterior margin of the occipital ring is not evident either. Kobayashi's specimens from Junee have been flattened during diagenesis as well as distorted and this flattening has produced the apparent elongation of the preglabellar area. However the distance from the depth of the border furrow to the tip of the border is approximately the same in most of the larger specimens from the other localities listed above. Perfaps most important of all is structure of the palpebral lobe which in mature specimens (e.g. Pl. 2, fig. 13) has the palpebral furrow well away from the margin at the midlength of the highly arcuate lobe just as it is in the holotype. In juvenile specimens this lobe is much narrower. As this and all other non-dimensional features match, the identity of these recent collections as H. lewisi is almost certain.

The wide flat palpebral lobes approach Parahystricurus Ross, 1951 and although the forward position of the lobes is distinctive of that genus the closest species to $/ 1$. lewisi may well be 8 . pustulosus Ross, 1951 and related forms.

The pygidium resembles closely that ligured by Ross (1951, pl. 19, figs $6,11,15$) from his zone E with the marked ridge on the pleural area particularly distinctive. Ross's suggestion that it probably belongs to Parahystricurus carinatus Ross, 1951 further suggests alliance of H. Rewisi with Parahystricurus although it is suggested below that Ross's pygidium may belong to Hystricurus robustus which oceurs at the same locality.

IIystricurus megalops Kobayashi, 1934 from Korca and 1/. granosa Endo, 1935 from Liaoning, China resemble each other as well as H. lewisi in glabellar shape, ornaent and most proportions of the cranidium so that the three may prove ultimately to be synonymous but we prefer to retain the Tasmanian name until at
fuller understanding including knowledge of pygidia is available for each of the Asian species.
Hystricurus sp. cf. H. robustus Ross, 1951
Plate 3, figures 8, 11, 12; plate 4, figures 1-7
Material: Some 20 to 30 cranidia librigenae, and pygidia from NMVPL1602 and from the Adam's Falls locality.
Description: Ross (1951, p. 51, 52) gave a detailed description of this species so only those features that add to or are at variance with his description are mentioned here. Ross's specimens are smaller than these Tasmanian individuals so some of the features that do not match exactly are probably due to comparison of different growth stages of the spccies. In the Tasmanian material the palpebral lobe is even wider and just a little shorter; the facial suture runs directly forward from the anterior of the palpebral lobe (PI. 4, figs 1, 3) (distortion of individuals in Pl. 4, figs 4, 6 erroneously suggests divergence) and runs diagonally back to the margin from the rear of the palpebral lobe; on the librigena the genal spine is deflected a little more noticeably laterally and does not exhibit the same adaxial curve in its posterior part.

The pygidium figured by Ross (1951, pl. 19, figs $6,11,15$) from the same locality as the cranidia named H. robustus are identical with the Tasmanian pygidia and may belong to this species rather than Parahystricurus carinatus as suggested by Ross in the explanation of his plate 19. Moreover the thorax assigned to H. robustus (Ross, 1951, pl. 14, fig. 27) is identical with the Tasmanian specimen (Pl. 3, fig. 12) in all observable features.

Remarks: This species is difficult to distinguish from H. lewisi with which it stands out from the rest of the genus by virtue of its palpebral structure. However the two may be separated by H. robustus having coarser tuberculate ornament overall, much shorter preglabellar field, exsagittal to converging course of facial sutures forward of palpebral lobes, and occasional tubercles on the pygidial pleural ribs. The resemblance of the pygidia of the two species is remarkable as the only distinguishing feature is the fine pustules on internal moulds and rare
course pustules on the external surface of H. robustus.

Tanybregma gen. nov.
Etymology: From the Greek tany meaning long and bregma meaning front of the head; the reference is to the considerable preglabellar length.
Type species: Tanybregma tasmaniensis sp. nov.
Diagnosis: Cranidium subquadrate, of low convexity, with luberculate ornament of two different sizes on glabella and interocular cheeks; glabella tapering forward, truncated anteriorly, with long 1 p furrow at high angle to transverse line; preglabeller length more than 0.35 total cranidial length, with well developed caecal network, gently downsloping forward; anterior border short, upturned; palpebral lobe long, situated posteriorly, arcuate but narrow, limited by well impressed palpebral furrow; facial suture diverging forward from palpebral lobe to widest point near anterior of border furrow, transverse behind palpebral lobe. Librigena with extremely wide doublure reaching well forward of genal field and terminating there in a rounded rostral suture.

Remarks: This genus is based on cranidia and librigenae only but it is possible that the pygidium is so similar to that of the cooccurring H. penchiensis that it is not possible to separate them in the deformed state in which they are found. Cranidial features are reminiscent of Hystricurus but the longer preglabellar field, 1 p furrow, row of denticles on the adaxial side of the genal spine and in particular the wide doublure and curved rostral suture distinguished Tanybregma. It has some similarity to a number of genera but none has the combination of Tanybregma; Nyaya Rozova, 1968 is shorter in front of the glabella, has longer less arcuate palpebral lobes and is smooth but it does have a pygidium that could easly be confused with that of H. penchiensis. Some species of Hystricurus, namely H. spp. A and E of Ross (1951, pl. 9, figs 31, 34, 37 and pl . 15, figs $10,11,13,14$) show a tendency towards preglabellar elongation so it is not unreasonable to suggest that Tanybregma may
have arisen out of a form like H. penchiensis with the features cited above sufficient to warrant generic separation. Hyperbolochilus Ross, 1951 (type species H. marginauctum Ross, 1951) is superficially similar but its short palpebral lobes, glabellar shape and course ol its rostral suture are distinctive at the generic level. Hystricurus (Guizhouhystricurus) Yin in Yin \& Li, 1978 (type species H. (G.) yinjiangensis Yin \& Li, 1978) has the long preglabellar field of Tanybregma but is clearly distinguished by its short convex anterior border and palpebral structure indicating placement in a separate hystricurid lineage.

Tanybregma tasmaniensis sp. nov.
Plate 3 , figures $1-7$; plate 8 , figure 7
Etymology: This species name refers to its discovery in Tasmania.
Material: Holotype UTGD95983, paratypes UTGD96674, 96676, 122528 10 122531 and 122554 plus some 10 to 15 eranidia and librigenae in the collection of the Museum of Victoria, all from NMVPLI600.
Diagnosis: As for genus.
Description: Ccphalon semicircular, of low convexity; cranidium a little longer than wide but generally subquadratc; glabella with gently curved sides converging forward, truncated anteriorly by transverse preglabellar furrow and rounded anterolateral corners, with well impressed $1 p$ furrow extending from close to axial furrow at level of midlength of palpebral lobe in a straight line at high angle to transverse to finish close to occipital furrow near sagittal line; occipital furrow dcep, steep sided, with flat bottom, with wide decper apodemal pits laterally separated from axial furrow by narrow very shallow part of furrow; occipital ring of uniform length, without median node, convex in lateral profile; axial lurrow well impressed but shallowing anteromedially and posteriorly; preglabellar field long, gently downsloping, with typical caecal network, approximately equal in length to the border plus border lurrow; border furrow long, shallow; anterior border concave, flattening out near border, uplurned, of uniform length throughout; eye ridge narrow and relatively long, consisting of
two parallel trunks, separated from palpebral lobe by sharp extension of palpebral furrow; palpebral lobe with short very narrow exsagittal anterior section, remainder arcuate, almost semicircular, of uniform width, narrow, defined by well impressed palpebral furrow, more than half as long as glabella, situated posteriorly; palpebral furrow cutting off eye ridge from beneath eye socle on librigena; facial suture diverging forward from anterior of palpebral lobe to be widest at border furrow, cutting fairly directly across anterior border but then running along close to anterior margin for some distance before reaching margin, almost transverse behind palpebral lobe, extending well beyond abaxial extremity of palpebral lobe then eurving posteriorly to reach margin at high angle; posterior cephalic limb short, wide, with well impressed posterior border furrow near anterior, with highly convex abaxiallyclongating posterior border occupying most of its length.

Librigena smooth, with long genal spine; visual surface at high angle to genal fickd, of uniform width, with well rounded ends, apparently holochroal; eye socle low, simply a rim appearing like a piece of wire lain beneath the visual surface; genal field sloping gently out to border furrow, longer than wide; border furrow wide and shallow as on anterior of cranidium, continuing posteriorly down length of genal spine after merging of posterior and lateral border furrows just behind genal angle; border narrow, convex, sharply upturned, with subdued terrace lines. laterally; genal spine quite long, with posterior border bearing sct of 9 or 10 or more distinct denticles as it runs down adaxial side of genal spine; doublure wide, with well developed parallel continuous anastomosing terrace lines, developing into angular ridge running down centre of genal spine beneath border furrow, extending some distance forward of the genal field where it terminates against an adaxially convex rostral suture.

Family LEIOSTEGIIDAE Bradley, 1925
Chosenia Kobayashi, 1934
Type species (by original designation): Chosenia laticeplala Kobayashi, 1934 from the

Early Ordovician Clarkella Zone at Saisho-ri, South Korea.
Diagnosis: Leiostcgiid with weakly impressed glabellar furrows; glabella truncated anteriorly; anterior border shorter and more convex in front of glabella, longer and flatter laterally; strong caecal trunk issuing from anterolateral corner of glabella, crossing axial furrow but not continuing; eyc ridges beginning much further back in axial furrow, oblique (c. 45°) to exsagittal line; palpebral lobes short, situated posteriorly. Pygidium transverse; anterior border furrow curving back strongly behind articulating facet and running to margin in front of marginal spine; with relatively wide border; pair of long marginal spines issuing from first, second or third pygidial segment; pleural furrows well impressed; interpleural furrows evident.

Other species: Apart from the type and C. adamsensis described here, only C. divergens Lu, 1975 from the Acanthograptus-Timgtzuella Zone (late Tremadoc) of the Fenhsiang Formation at Yanshuiping, Changyang, western Hupeh Province, China is assigned to this genus.

Remarks: The type species was poorly illustrated and does not provide sufficient morphology upon which to interpret a separate genus. The fragmentary holotype cranidium (Kobayashi, 1934, pl. 8, fig. 8) is particularly unsatisfactory. However, one paratype pygidium (Kobayashi, 1934, pl. 8, fig. 11) shows sufficient morphology to be confident that it is congeneric, if not conspecific, with Chosenia divergens. Pygidial characters of the genus may be discerned from Lu's (1975, pl. 2, figs 28-31; pl. 3, figs 1,2) well illustrated pygidia. However, the only cranidium figured by him is also fragmentary and reveals only a few more features than the type species.

Assignment of Chosenia adamsensis sp. nov. is discussed under that species below but its inclusion allows a somewhat more complete understanding of the morphology and systematic position of Chosenia. The cranidium is almost identical with that found in some specics of Leiostegium Raymond, 1913 (c.g. L.
ulrichi Berg \& Ross, 1959, pl. 21, figs 1, 6). There is undoubtedly a close relationship between the two genera but features of the pygidium other than the marginal spines (see discussion of species below) are critical in this group of trilobites. Taking the pygidia into consideration the well impressed plcural furrows are probably most distinctive; also important is the course of the border furrow anterolaterally. These features along with the larger anterior fixigenal area on the cranidium, laterally longer anterior cranidial border and glabellar shape distinguish Chosenia from Evansaspis Kobayashi, 1955 whose type species is E. glabrunn Kobayashi, 1955 from the Lower Ordovician McKay Group in British Columbia. Evansaspis resembles Chosenia adamsensis specifically only in the position of its pygidial marginal spines as discussed below. A case for considering Chosenia a subgenenus of Leiostegiun could be made on the basis of the similarities between C. adamsensis and Evansaspis but we consider that the pygidial structure of Chosenia indicates a separate lineage worthy of generic separation but included in the same family. How each of these groups is related to Leiostegium and its origins is not yet apparent but if its origin is from the Kaolishaniidae as scems most likely then one of these lineages may have produced Leiostegitum by loss, possibly into the thorax, of the macropleural segment. The possibility should be investigated that the Chosenia line may have emerged from the Mansuyiinae with its ornamented pygidial spines, well impressed pleural furrows, subtle pygidial border, posterior eyes and large faint glabellar furrows and that Evansaspis may have emerged from the Kaolishaniidae with more prominent pygidial borders, less distinct pleural furrows, and better impressed lateral glabellar furrows. If this proves to be so then the Leiostegiidae would be polyphyletic.

Leiostegium (Leiosteginm) floodi Shergold, 1975 from the early Tremadoc Oneolodus bicuspatus with Drepanochus simplex zone of the lower Ninmaroo Formation at Black Mountain, western Queensland may well be a species of Chosenia also but it is not possible to distinguish the genera on cranidia alone.

Chosenia adamsensis sp. nov.
Plate 4, figures 8-11; plate 5 , figures $1-10$
Etymology: Named lor Adam's Falls near the type locality of this species.
Material: Holotype UTGD122535, and paralypes UTGD95175, 95927, 95942, 95945, 96023, 96025, 96027, 96029, 96602, 96611, 96637, 96642, 96646.

Diagnosis: Member of Chosenia with well impressed palpebral furrows, luberculate ornament, pair of long curving pygidial marginal spines from second or third segment ol pygidium.
Description: Moderately large convex species (ecphala up to 2.5 cm long); Surface ornament of fine sparsely seattered tubereles over whole exoskelcton. Cranidium subquadrate, with glabella lower than cheeks; glabella with straight sides, tapering slightly forward, with anterior truneated to broadly curved, highly convex in antertor protitc; laterat glabellar furrows in 4 pairs not evident on all specimens, shallow, indistinet; Ip furrow directed obliquely back from the axial furrow but then curving to be transverse and shallower but continuous sagittally in smaller specimens, discominuous in larger specimens; $1 p$ and $2 p$ furrows joining in axial furrow in smaller individuals, appearing as a Y-shaped furrow in larger individuals; 2p, 3 p and 4 p approximately parallel to Ip but not curved adaxially and not continuous over axis, beeoming progressively shallower and shorter lonward, $4 p$ in front of eye ridge, and not reaching axial furrow, 3 p meeting axial lurrow just behind eye ridge; tubereulate ornament on lateral glitbellar lobes but not furrows; occipital lurrow well impressed, long, with steeper wall in front thatr behind, transverse medially but with narrow posteriorly sloping lateral sections aceommodating apodemes; oceipital ring of uniform length, flattened on top in lateral profile, with only extremely vague anteromedian node; axial furrow deep and wide, of unilorm width, with a pair ol strong fossulae at anterior border lurrow and another pair ol prominent pits just behind the strong ridge (eaceum) extending out of the anterolateral corner of the glabella across the axial furrow and
fading into the cheek; crossed by low ridge from anteriorly-curving occipital ring into posterolateral corners of checks; preglabellar field absent; anterior border furrow deep and long in front of glabella, shallower and shorter in front of cheeks, with alınost vertical wall up onto border and steep but gentler slope posteriorly; anterior border highly convex, flattened and sloping forward in lateral profile, longer laterally (belore tapering along facial suture), excavated posteromedially by the border furrow thrust lorward in front of the clongate glabella, with continuous terrace lines near and paralle to the margin; eye ridge prominent, composed of two parallel caeca, at approximately 45° to transverse, meeting but not crossing axial furrow well back from (nearly 0.3 of glabellar length) glabellar anterior; palpebral lobe strongly arcuate, short, situated opposite posterior third of glabella, strongly elevated and then flattened on top medially; palpebral furrow well impressed shallowing over midlength, parallel to lobe, running across eye ridge at junction with palpebral lobe, turning down around posterior of the lobe; facial sutures diverging slighty forward from anterior ol palpebral lobes to border furrow, cutting diagonally at low angle to transverse across anterior border, highly arcuate around palpebral lobe then dropping down almost verlically and slightly posteriorly to the posterior margin in the same exsagittal line as the outermost point on the palpebral lobe; posterior border furrow well impressed, of unilorm length throughout, transverse; posterior border short, convex, ol uniform Iength throughout, strongly downturned as part of eephalic posterolateral limb beyond articulating point directly behind posterior of palpebral lobe.

Librigend with broad, gently convex genal field; eye socle high, vertical, marked off by a wide poorly-impressed furrow; border composed of two distinct parts separated by a shallow furrow, rather flat; outer part narrow, with continuous comarginal terrace lincs continuing across facial suture onto cranidium, terrace lines rumning over margin at end of outer part of border near midlength of eyc, tapering to nothing before level of posterior border furrow; inner part ol border broader than outer
part, beginning antcriorly with a smooth area just behind the facial suture and continuing posteriorly into a long strong genal spine, with less-rcgular sometimes anastamosing longitudinal terrace lines that continue down the genal spine; border wide in area of overlap of two parts but rather narrow anteriorly and with strong reduction in width posteriorly at the spine basc; posterior border short and highly convex; border furrow short and decp postcriorly, with small re-entrant in basc of genal spine (clongate into a furrow down the spine in one specimen) where posterior border furrow comes to genal spine, shallow laterally, continuing in curve onto cranidium; rostral suture rumning adaxially towards posterior.

Thorax of 10 segments, of uniform width; axis with deep axial lurrow having narrow posteriorly-sloping parts and apodemics as in occipital furrow; articulating hall-ring short, smooth, almost as high as ring; ring of uniform length rumning back from axial furrow for short distance then transverse medially; axial furrow weakly impressed; pleurac flat to articulating line then gently down turned beyond; well impressed pleural furrows occupying most ol' length of pleura as far as articulating line, then tapering to nothing against the posterior ol the facet in a short distance; anterior and posterior pleural ribs of equal length; pleural extremities with free spines (as shown by extent of doublure on internal mould), with large facets over full width and occupying full length for distal half, half as wide as fixed pleurae; prominent processes at lateral articulating points.

Pygidium subtriangular to semicircular, of moderate convexity; axis of seven (or eight in larger specimens) rings and short terminus, tapering to rounded posterior, reaching close but not quite to the inner edge of the doublure, transaxial furrows transverse, progressively shallower posteriorly; pleural areas convex, with well impressed pleural furrows becoming less distinct and narrower posteriorly and not extending onto the border region; anterior border furrow (i.c. first pleural furrow) very well impressed especially laterally behind the long narrow sloping and indistinct facet, curving strongly back in this arca and running to the
margin in front of spine; interpleural furrows evident on first three pleural ribs; border furrow shallow, indistinet, beginning behind marginal spines; border relatively narrow, of uniform width, with some terrace lines near the margin, convex near the border furrow then llatter and down sloping distally; pair of marginal spines issuing from second or in some specimens third segment of pygidium, long, curving adaxially, with fine longitudinal discontinuous and rarely anastamosing terrace lines; doublure convex ventrally, with well developed continuous and anastamosing terrace lines, widest anteriorly, narrowest sagittally, swinging around anterolateral corner to finish at lateral articulating process.

Remarks: This species is assigned to Chosenia on the basis of the cranidial similarities with Lu's (1975, pl. 2, fig. 27) C. divergens and on pygidial leatures behind the segment carrying the macropleural marginal spine. We suggest that the more posterior position of the spine in C. adamsensis is duc to the fact that onc or two thoracic segments remained ankylosed in the pygidum (i.c. not relcased into the thorax) whereas in C. divergens these segments have been released forward so the marginal spines appear on the first pygidial segment. This is reinforced by the pleural furrows in front of the spine rumning to the margin in C. adamsensis. The variation between second and third pygidial segment being macropleural in this specics indicates that it is not an important feature and that the first segment being macropleural in C. divergens is a relatively minor distinction phylogenetically. We consider it a specific taxobase and further the pleural furrows and postcriorly turned anterior border lurrow are considered generic taxobases. For this reason we consider Perischodory Raymond, 1937 and Evansaspis Kobayashi, 1955 belong to a separate lineage within which they may bc eongeneric, despite Bcrg \& Ross (1959, p. 114), by analogy with C. divergeus and C. adamsensis in their lineage. With the origin of pygidial marginal spines as incorporated macropleural segments in mind, better understanding of species relationships in these groups may be achieved.

The considerable variation among available specimens of C. adamsensis is partly due to intraspecific variation and partly due to distortion after burial. The latter is easily recognised in the transverse or elongate pygidial shape but the former is more difficult to discern. Position of the pygidial marginal spines is variable between the second and third pygidial segments and the structure of the $1 p$ and $2 p$ glabellar furrows is also variable from being two discrete furrows to being a single Y-shaped furrow but this latter feature may change during growth. The identity of $1 p$ and $2 p$ combined into one rather than a single Y-shaped $1 p$ is clear.

Family ASAPHIDAE Burmeister, 1843
Asaphellus Callaway, 1877
Type species (by original designation): Asaphus homfrayi Salter, 1866.

Asaphellus sp. cf. A. trinodosus Chang, 1949
Plate 4, figure 12; plate 6 , figures 1-12
Material: UTGD95877, 95895, 95917, 96002, 96005, 96032, 98111, 98117, 98137 and 122536 to 122539 all from NMVPL1602.

Description: Cranidium of extremely low convexity, without obvious furrows; glabella barely outlined by an extremely subtle change of slope onto the cheeks, broad at base (approx. 0.5 cranidial width) tapering forward, about 0.83 of cranidial length, with low inconspicuous median node 0.16 of crandial length from posterior margin; occipital furrow barely evident, very near posterior margin; cheeks narrow, with narrowest point at anterior of palpebral lobes; palpebral lobes flat, situated with anterior of lobe at midlength of cranidium, comparativcly long, broadly arcuate; preglabellar area flat; posterior limb downsloping abaxially, with long extremely shallow posterior border furrow parallel to and close to the posterior margin, with blunt lateral margin at facial suture; facial suture isotelliform, hardly diverging forward of the palpebral lobes, with widest point forward of palpebral lobes well bchind glabellar anterior, curving smoothly forward to the ogive in the midline, running straight back from rear of palpebral lobe for short distance then curving
smoothly abaxially but never transverse (always oblique back) then curving smoothly into an exsagittal line to meet posterior margin at right angle; posterior margin transverse. Librigena long and relatively narrow, of low convexity like the cranidium; eye socle vertical, low, defined below by the change of slope onto the flat genal field but also with a wide shallow furrow around its base; border furrow broad and very shallow, fading out anteriorly, swinging adaxially into the posterior border furrow well before base of genal spine; border narrow, weakly convex, of uniform width, with some weak longitudinal terrace lines near posterior; genal spine short, tapering strongly, with fine longitudinal terrace lines extending along it, continuing the line of the lateral margin of the cheek to its tip. Hypostome incompletely known from only one specimen (Pl. 6, fig. 10). Median body broadest at posterior of the anterior wings, subcircular, of low convexity, with fine ornament of concentric terrace lines about an anteromedian point; posterior lobe only 0.2 of length of median body; median furrow as two oblique lateral clefts, connected to lateral border furrow by very much shallower more exsagittal furrow; anterior border flat, with gently arched anterior margin; posterior border short, convex, isolated by longer well impressed border furrow, with median elongation.

Pygidium of low convexity, with poorly impressed furrows, semicircular or just slightly more transverse in dorsal view; axis broadly convex in anterior profile, flat in lateral profile, of nine rings plus posteriorly rounded terminus, rings bccoming shorter and less well defined posteriorly, tapering strongly along anterior threc or four rings then tapering only slightly if at all, apparently widening again at terminus in some specimens; transaxial furrows transverse, with slightly deeper apodemal pits latcrally, extending to inner edge of doublure; pleural areas with extremely shallow pleural and interpleural furrows visible on a few specimens; axial furrow not impressed, marked by small change of slope from axis to pleural arca; antcrior border furrow well impressed bchind latcral articulating process, fading out about halfway along width of articulating facet, straight, sloping a
little to posterior abaxially; facet stecp, wide, flat, longest near middle of doublure; border furrow very wide and shallow, parallel to border, finishing against facet; doubleure almost as wide as anterior of axis, relatively wide, with distinct, parallel, continuous terrace lines.

Remarks: This material is assigned to Asaphellus rather than Megistaspis on the basis of its long glabella, almost cffaecd axial furrow, larger cyes, and different hypostomes. Within Asapleellus it is related to a group of Tremadoc species from Argentina (A. catamurcensis Kobayashi, 1935 (see Harrington \& Leanza, 1957, p. 147), A. jujuanus Harrington \& Leanza, 1957, and A. riojanus Harrington \& Leanza, 1957), from Korca (A. tomkolensis Kobayashi, 1934) and from China (A. changi Sheng, 1958. A. inflatus Lu, 1959, A. trinodosus Chang, 1949, A. praetrinodosus Lu, 1976 among others). Of this array of virtually indistinguishable specics the Tasmanian material seems most closely comparable with A. trinodosus in so far as subtle swellings are barcly apparent just behind the palpebral lobes in a similar position to the more obvious ones of the Chinesc species. The course of the facial suture just behind the palpebral lobe seems distinctive of the Tasmanian material but this hardly seems sufficient to crect a species especially within such a difficult taxonomic complex of essentially contemporary species.

Megistaspis (Ekeraspis) Tjernvik, 1956
Type species (by original designation): Plesiomegalaspis (Ekeraspis) armata Tjernvik, 1956.

Megistaspis (Ekeraspis) euclides (Walcott, 1925)

Plate 7, figures 1-15
1925 Xenostegium euclides Walcon, p. 126, pi. 24, ligs 13, 14.
1925 Xenostegium albertensis Walcott, p. 125, pl. 24, figs 10, 11.
1955 Kayseraspis (?) euclides Walcon; Kobayashi, p. 442, pl. 4, figs 4-12; pl. 5, figs 8-10.
Syntypes: USNM70364 and 70365 (figured by Walcott, 1925, pl. 24, figs 13, 14) from Mons Formation, Sawback Range, British Columbia.

Material available: Some 40 or 50 fragmentary and distorted specimens are available from NMVPL1601 including UTGD95994, 98095, 98102 and 122540 to 122551.

Diagnosis: Ekcraspid with very low convexity, axial furrow extremely poorly impressed; glabella with rounded anterior, waisted at level of palpebral lobes; palpebral lobes small, wide, semicircular, situated behind midlength of cranidium; facial suture diverging forward of palpebral lobes, coneave forward of palpebral lobe to widest point, sigmoidal behind palpebral lobe, meeting posterior margin at large angle, as it runs posteroasially. Free cheek with long genal spine. Hypostome highly convex, with complete rounded posterior margin, with widest point near midlength. Pygidium subtriangular, with long terminal spine decreasing in length with growih; pleural and interpleural furrows weakly impressed on anterior scgments.
Description: This description only refers to additions or modifications to that of Kobayashi (1955, p. 442). Occipital furrow evident only on internal moulds, extremely shallow, relatively very close to posterior margin. Palpebral lobe comparatively short, close to glabella, wide, semicircular, flat but slightly elevated, situated near midlength of glabella and behind midlength of cranidium. Facial suture diverging slightly forward from palpebral lobes, with widest point forward of glabellar anterior, then anteriorly concave to antcromedian point, curving laterally a short distance behind the palpebral lobes, then almost transverse but always slightly oblique, then curving posteriorly to be exsagittal and curving back towards the axis near posterior margin to give rounded margin to extremity of posterior cephalic limb.

Librigena with broad flat genal field, without border furrow; eye socle low, vertical, prominent; genal spine long, almost circular in section but with strong ridge running down ventral side, with distal part in exsagittal line: doublure, wide, elongate anteriorly, in transverse section slightly upturned adaxially to remain flush against dorsal exoskeleton, with strong parallel terrace lines from base of genal spine to median suture of isotclliform suture
pattern, with terrace lines diverging and increasing in number by intercalation anteriorly. Hypostome convex, subquadrate, covered with terrace lines more or less concentric about an anteromedian point on the high part of the median body; median body longer than wide, rounded anteriorly, with well-impressed median furrow dividing it into large anterior lobe and very short low posterior tobe; median furrow at high angle to transverse line laterally, not continuous across axis; anterior wings short almost verticat, well ormamented; shoulder wide, fairly flat, tapering strongly both forward and back; border furrow well impressed laterally, not connected directly to anterior border furrow, running most distinctly into median furrow but also connected by shallow furrow with posterior border furrow; posterior margin complete, short medially, covered with terace lines; anterior border furrow cutting across anterior wing to margin in front of tateral notch. Thorax of six or more segments (complete specimen not avaitable); pleural furrow beginning at anterior in axial furrow, in midlength for most of its course, fading out about the midwidth of the liree pleura, deepest crossing articulating line; thorax typicafty asaphid.

Pygidium triangular, with long postcrior spine becoming relatively shorter with growth; axis long, slightly tapering, almost parallel sided, with seven barely discernible rings and a long axis consisting presumably of several more rings that are not defined; pleural fields with poorly impressed pleural furrows anteriorty, with even fainter interplcural furrows on the ribs, with well impressed anterior border furrow identical with the thoracic pleural furtows; articulating facet wide, stceply inclined; border furrow not impressed; doublure of moderate width, with welf developed paraltel and anastamosing terrace lines, close beneath dorsal exoskeleton; posterior spine circular in section, connected to posterior of axis by low ridge across border area in some specimens.

Remarks: This species was erccted by Walcott for pygidia and a hypostome and the interpretation of the cephalon depends upon Kobayashi's (1955, pl. 4, figs 5, 10; pl. 5, fig. 8) assignment
of cranidia. The Tasmanian material, where only one asaphid species occurs at the horizon in question, confirms his association and all that remains is for this lype of cephaton to be discovered at the type locality. However, morphology of the species is now well estabtished. Kobayashi (1955) recognised the alliance of the species with Megistaspis but assigned it to Kayseraspis Harrington, 1938 without commenting on the reasons. The paraflel-sided glabelta, shorter glabella, more posterior eyes, triangular pygidimen and longer stouter posterior spine distinguish this species from Kayseraspis.

Pamily DIKELOKEPHALINIDAE Kobayaslii, 1936

This famity was placed with the asaphids by Harrington et al. (1959) probably by association with the Taihungshaniidae which were correctly placed in the Asaphoidea. The Dikelokephalinidae have a glabella usually about $0.6-0.7$ of cranidial tength while asaphids have a much longer glabelta. In the pygidium the eritical taxobase is the attitude of pleural liur-rows-relatively transverse in asaphich bur strongty curved backwards in the dikelokephalinids. The Taihungshaniidae and Dikelokephalinidae both possess a pair ol pygidial marginat spincs but these are homeomorphous structures shared with a great many other trilobites as welt. It appears far more likely that the Dikelokephalinidae evolved from the Dikelocephalidae as suggested by Kobayashi (1936, 1960). The brief remark by Fortcy and Pccl (1983, p. 54) that the Diketokephatinidac are probably related to the Ceratopygacea would need some amplification if it is to be taken seriously cspecially in light of the prominent occipital mode (Pl. 8, lig. 7); position of the hode, Forward of the occipital furrow rather than on the oceipital ring, was used to relate Macropyge to the Ceratopygacea (Owens el al., 1982) so some discussion of the importance of this feature would seem appropriate. The Hungaiidae Raymond, 1924 may have a similar origin and these two derived famitics could be synonymous.

Dikelokephalina Brogger, 1896
Type species (designated Vogdes, 1925): Cen-
tropleura ? dicraeura Angelin, 1854 from the Tremadocian Ceratopyge Limestone of Gamlebyen, Oslo, Norway.

Diagnosis: Large isopygous trilobites of low convexity. Glabella convex, anteriorly rounded, with three pairs of lateral glabellar furrows; posterior pair being forked adaxially, none reaching the axial furrow. Frontal area 0.3 to 0.5 length of cranidium, together with anterior parts of fixed cheeks forming an extensive flat anterior area. Palpebral lobes of medium to large size, at or behind midlength of glabella. Fixed cheeks approximately half glabellar width at level of midlength of palpebral lobe. Posterior cephalic limb very wide and short. Pygidium with long, narrow axis of at least seven or eight rings. Pleural furrow curved posteriorly, becoming almost exsagittal posteriorly. Border with relatively narrow semielliptical excavation so that the margin on either side of it is extended into a strong spine.
Remarks: Affinities of the group of genera to which this genus belong were discussed by Kobayashi $(1936,1960)$ and by Henningsmoen (1959). As mentioned above the several groups of genera having spinose pygidia, with which affinities for the Dikelokephalinidae have been inferred, are homeomorphous forms and the true affinities of Dikelokephalina will only be arrived at by careful plotting of phylogenies at the species level. The rarity of Dikelokephalina in all its known occurrences suggests that plotting of such phylogenies will not be possible for some time but the Dikelocephalidae seems the family most likely to contain the ancestral stock.

The posterior pygidial spines are the most distinctive feature of the genus and their absence from any described species or the inability to observe the morphology of that part of the exoskeleton (e.g. for D. parva Kobayashi, 1960 and D. conica Kobayashi, 1960) must throw doubt on assignment to the genus. Another genus with similar posterior pygidial border morphology is Asaphelina Bergeron 1889, the type species of which was originally included in Dikelokephalina by Brogger (1896). However, that genus is referred to the Taihungshaniidae (Courtessole et al.,
1981), which family is distinguished by the asaphoid glabella and pygidial pleural furrows being transverse or almost so; in Taihungshania itself, the pleural furrows are transverse in juvenile individuals so indicating its asaphoid affinities-their posterior sweep in adults is a secondary development. The posterior spines may reasonably be considered homeomorphous.

Within the family the position of the posterior spines distinguishes Dikelokephalina from all other genera.
Age and Distribution: Late Tremadoc; Norway, Sweden, Wales, South Korea, Tasmania.

Dikelokephalina asiatica Kobayashi, 1934
Plate 8, figures 1-8
1934 Dikelokephalina asiatica Kobayashi, p. 563, pl. 6, figs 1-3.
1934 Dikelokephalina kanaegala Kobayashi, p. 564, pl. 6, figs 4, 5.
1980 Dikelokephalina sp. nov.; Stait \& Laurie, p. 205, fig. 3, appendix 1 .
Holotype (by original designation): Cranidium figured by Kobayashi (1934, pl. 6, fig. 2) from the Clarkella Zone (Late Tremadoc) at Saishori, South Korea.
Material: Apart from the figured material of Kobayashi the specimens assigned to this species are all from Faunal Assemblage No. 3 of Stait and Laurie on the Gordon Road Section and are numbered UTGD95978-95982, 96689, 122552, 122553.
Description of Tasmanian material: Cranidium of low convexity except for broadly convex glabella; glabella tapering gently forward to rounded anterior, with three pairs of lateral glabellar furrows adjacent to but separated from the axial furrow, furrow 1 p bifurcate adaxially, elongate transversely, running very slightly to the posterior adaxially, not very deep, and with very gentle sides, its anterior branch shorter and less elongate and running forward adaxially; furrows 2 p and 3 p rounded pits very close to the axial furrow; 3 p being just behind junction of eye ridge and axial furrow; occipital furrow well impressed, with deeper short wide apodemal pits reaching the axial furrow, medially shallowing and curving slightly forward; occipital ring of approximately
uniform length, with prominent median tubercle near midlength, with transverse posterion margin; extremely weak development of alac on one specimen (Pl. 8, fig. 7); preglabellar length 0.3 of cephalic length; anterior border liurow very vaguely apparent just forward of the midength ol the preglabellar length; all areat in from of glabella llat; fixed cheeks natrow and flat; palpebral lobes prominent, wilh semicircular outer margin, with anterior end much closer to glabella than posterior end, sloping up abaxially; palpebral liurrow not well impressed but nevertheless distinct, parallel 10 outer margin ol lobe medially but swinging around both ends of lobe to lacial suture; lacial suture running forward from palpebral lobe in a broad curve but the palpebral lobe extends laterally beyond widest extent of anterior part ol facial suture; posteriorly, lacial suture rumning transversely out for 0.75 ol basal glabellar width belore curving sharply posteriorly to the margin; posterior eephatic limb wide and short, with uniform posterior border lurrow running aeross its anterior part to the racial suttre before the suture eurves back; posterior border of uniform length, convex in lateral prolile and downturned abaxially, with prominent gently curved terrace lines running mainly in the exsagittal direction; posterior margin transverse adaxially but curving slightly back abaxiatly.

Pygidium of low convexily, with axis standing only slightly above pleurac in anterior protile; length to width ratio unknown, articulating hall-ring very short; axis of live well defined rings and a long poorly divided terminus that includes at least four more rings and the terminal piece which is at the inner edge of the doublure, quite wide anteriorly, tapering markedly in anterior half; rings of uniform lengit; wide, sharp, poorly defined, apodemal pits laterally in transaxial lurrows visible only on internal moulds; axial furrow evident only as a clange of slope and change of direction ol furrows; pleural areas erossed by five pairs of well impressed pleural furrows becoming more exsagittal in disection, closer logether and shallower towards the posterior; pleural lintrows extend almost to the margin, shallowing markedly to mothing abaxial to the inner margin of the doublure; border not elcarly
defined but a fatily wide hat marginal arta that lapers forward is weakly defined by change of slope from plenal areas and ends of plemal furrows; posterionly is a long but narrow excavation in the border with, ats a consequence, at pair of sharp marginal spines beside it; border raised up to the margin of this excavation; on the border and possibly owe the whole plewral area are very laint, irregular transverse terace lines most mumerons at the margin deereasing ill number adasially; doublure wide, very close bencath dorsal exoskeleton thonglout being upturned near its mid-width to the pleural areas and being upturned with the dorsat exoskeleton around the posterior excavation, with strong ertace lines parallel to the margin over the enlire width; inner edge of doublure with marked excavation posteromedial around the rear of the asis.
Remarks: The material illustrated by Kobayashi (1934) is relatively incomplete making comparison with new collections dilficult. However, imeroduction of a new specilie mame when all observable featmes between the Korean and Tasmamian specimens are so clearly idenicall would be irresponsible. Although the margin of the two ligured Korean cramidia (Kobayashi 1934, pl. 6, figh 2, 3) are very incomplete his dashed suggestions for their positions seem quite reasonable. However, his dashed oultine lor the holotype pygidium of D. kanaegata (Kobayashi, 1934, pl. 6, fig. 5) appeats to have a right angle bend it the left anterolateral corner that is mulikely to be correet. The pygidium assigned 10 D. asiatica by (Kobayashi, 1934, pl. 6, ligs 2, 3) are very incomplete his dashed suggestions for their posihave narrow raised pleural ribs separated by wide interspaces. If the external sutface is correctly described then this specimen should be separated at least at the generie level from the associated cranidia. 11 is far more likely to be an internal mould of a juvenite specimen and its extemal morphology is likely to be more in line with the two pygidia assigned to D. kallaegata. As the two species oceur logether at Makkol, South Korea and after considering the states of preservation but without actually secing the material we consider the two species of Kobayashi (1934) to be synonymous. Only the
structure and position of the palpebral lobe may appear to distinguish the Tasmanian species but the posterior course of the facial suture was interpreted by Kobayashi and may be in error. The holotype and one Tasmanian specimen show incipient alar development on one side only. One feature which does appear distinctive is the border region sloping down to the margin of the posterior excavation in Kobayashi's material (1934, pl. 6, fig. 4) whereas it is upturned in the Tasmanian specimens. This is considered to be intraspecific variation if it is real but the exoskelcton of this species is quite flexible and the difference may be due to preservational history. Further collection and study of material from the type locality is urgently needed to clarify this species. Dikelokephalina asiatica may be distinguished from the type species by its broader subtriangular rather than subquadrate pygidium, the closer position of the posterior spines, straight pleural furrows, very weak alae, anteriorly placed posterior border furrow on cranidium and less divergent more rounded facial suture in front of the palpehral lobe.

Asaphopsoides Hupe, 1955

Type species (by original designation): Dicellocephalus ? villebruni Bergeron, 1895 from the earlicst Arenig of Montagne Noirc, southern France.
Diagnosis: Dikelokephalinid with preglabcllar length 0.3 or more of cephalic length; strong, wide, diagonally directed, linear apodemes in preglabellar furrow. Pygidial axis may contain 6 to 16 rings; pleural furrows swept backwards with posterior pleural furrows at very low angle to sagittal line; pygidial border moderately to very wide, without border furrow but with at least a pair of variably sized, prominent, flat spines placed relatively widely apart at posterolateral corners.
Species content of gemus: A. villebruni type species. See Thoral, 1935 and Courlessole el al., 1981.

[^0]Ogygites (.) annumensis Mansuy, 1920 (Early Arenig; Dong-san, North Vietnam).
Tailhungshania welleri Sheng, 1934 and Taihungshania welleri var. brevica Sheng, 1934 (Tremadoc; Chekiang, China).
Asaphopsis granulatus Hsu, 1948, A. planispiniger H su, 1948, A. angustigenatus Hsu 1948, A. immanıs Hsu, 1948, Temnoura grandispinifer Hsu, 1948, and Temnoura alate Hsu, 1948 all from the Late Tremadoc or Early Arenig of western Hupeh, China.
Asaphopsis semicircularis h.u, 1975, A. angulutus Lu, 1975, A. (?) abnormis Lu, 1975, and A: yaokouzzensis Lu, 1975, all from the Tremadoc or earliest Arenig of western Hupeh or southern Sichuan.
Asaphopsis wuchuanensis Yin in Yin \& Li, 1978 (Tremadoc; Guizhou, China)
Asaphopsis yinjiangensis Yin in Yin \& Li, 1978 (Tremadoc; Guizhou, China)
Asaphopsis sanchaqiensis Lu in Zhou el al., 1978 (Tremadoc; southern Chinia)
Asaphopsis latdimbatus Lu in Lu et al., 1976 (Tremadoc; southern China)
Asaphopsis hanyuanensis Li, 1978 (Tremadoc; Sichuan, China)
Asuphopsis yanjinensis Li, 1978 (Tremadoc; Sichuan, China)
Asaphopsis ovoideus Xia, 1978 (Tremadoc; Hupeh, China)
Asaphopsis budabnensis Balashova, 1966 (Early Ordovician: Russian Platform)

Discussion: Asaphopsoides was erccted 10 separate Dicellocephahus ? villebruni from Asaphopsis Mansuy, 1920 where it had previously been placed (Kobayashi, 1936, 1940). In doing so Hupe (1955) quoted features of the cranidium as generic taxobascs. He, therefore, did not have the type species of Asaphopsis in mind as A. jacobi is known only from fragmentary pygidia and thoracic segments (Mansuy, 1920, pl. 1, fig. 7a-g). Although the concept of Asaphopsis has for almost 40 years rested upon Kobayashi's species A. nakamurai it is cssential that Mansuy's (1920) type species be reappraised for a stricter generic basis. Of the pygidia figured by Mansuy only one (1920, pl. 1, fig. 7a) clearly shows the marginal spine and should be considered the lectotype. Both this and the other interpretable specimen (Mansuy, 1920, pl. 1, fig. 7b) have their pleural furrows running transversely near the anterior and at only a small angle (less than 20°) to the transverse line posteriorly. This feature alone suggests that the type is not congeneric with any other species so far referred to Asaphopsis. This type of pleural structure is much more reminiscent of asaphoid trilobites (e.g. Asaphellina of the Taihungshaniidae). The marginal spines of the Taihungshaniidae
and Dikelokephalinidae probably developed homeomorphously. The distinction is most evident in glabellar features of the cranidium but even in the pygidium, the Taihungshaniidae have much more transverse pleural furrows in adult Asaphellina Bergeron, 1889 (see Courtessole et al., 1981, pl. 7, figs 1, 3, 6) and in juvenile Taihungshania Sun, 1931 (see Courtessole et al., 1981, pl. 5, figs 1-6, 8, 9). Taking these data into account Asaphopsis should be restricted to A. jacobi and probably A. reedi which may be synonymous with the type species and that genus should be removed to a tentative placement in the Taihungshaniidae pending collection of cephala of the type species.

The glabellar features of Asaphopsoides villebruni are illustrated by Thoral (1935, pl. 23, figs 5, 6) and Courtessole et al. (1981, pl. 4, fig. 5); the latter authors point out that they have been incorrectly illustrated in general textbooks. Certainly the illustration in the Treatise (Harrington et al., 1959, fig. 268-6a) is highly inaccurate. However, the illustration of Courtessole et al. (1981) is not identical with the figures offered by Thoral (1935, pl. 23, figs 5, 6) and it may very well be that the bulge in the side of the glabella adjacent to the prominent pit in the glabella (presumably furrow 2° of Courtessole et al. 1981, p. 21) is an artefact of compression in the sediment. There is indication from many of the illustrated specimens of this genus (e.g. Lu, 1975, pls 26, 27) that the exoskeleton was very thin and had a certain amount of flexibility so generic taxobases should not be cited as such detailed features. Variations in the shape, size and position of lateral glabellar furrows should be used at present only as species taxobases in this trilobite family. As significant features listed in the diagnosis are remarkably uniform, where observed, through the species listed above, the many species previously referred to Asaphopsis should now be referred to Asaphopsoides. The long preglabellar part of the cephalon, marked linear apodemes in preglabcllar furrow, posteriorly swung pygidial plcural furrows, and fairly widely scparated marginal spines appear to be the most significant gencric taxobases. The single pygidium upon which is based

Dainellicauda Kobayashi, 1960 is also referred to Asaphopsoides as none of the features mentioned as diagnostic by Kobayashi (1936, p. 177; 1960, p. 253) are valid. His indication that the marginal spine arises from the first pygidial segment is not substantiated and the position of the abaxial end of the fourth pleural furrow, aiming at the margin just behind the base of the spine, is identical with that in several Chinese species of Asaphopsoides as well as A. florentinensis. Dainellicauda is a junior subjective synonym of Asaphopsoides.
Distribution and age: Late Tremadoc to Arenig of China; Early Arenig of France and Tasmania; Early Ordovican of Russia, South Korea, northern Vietnam and Pakistan.

Asaphopsoides florentinensis (Etheridge, 1905) Plate 2, figure 15; plate 9, figures 1-11; plate 10, figures 1-10

1905 Dikelocephalus florentinensis Etheridge, p. 24, pl. 10, fig. 4.
1914 Dikehokephalina florentinensis (Etheridge); Walcott, p. 350.

1936 Taihungshania florentinensis (Etheridge); Kobayashi, p. 179, pl. 20, fig. 16 (not fig. 15).
1936 A saphopsis florentinensis (Etheridge): Kobayashi, p. 177. pl. 21, fig. 5.

1940 A saphopsis juneerisis Kobayashi, p. 64, pl. 11, figs 6-9.
1940 Asaphopsis (?) gracicostatus Kobayashi, p. 65, pl. 11, fig. 10.
1974 "Asaphopsis" juneensis Kobayashi; Corbett \& Banks, pl. 1, figs 14, 17, 18, 22, 23, 24; pl. 2, fig. 9.
1980 Asaphopsis juneensis Kobayashi; Stail \& Laurie, p. 207.

1980 Asaphopsis sp. nov. Stait \& Laurie, p. 207.
Holotype (by monotypy): AMF9282 a damaged and distorted pygidium from the Florentine Valley, southwestern Tasmania at a site near 'The Gap' (fide Corbett \& Banks, 1974, p. 219).

Other material: More than fifty dissociated exoskeletal parts from 'The Gap' and from the Gordon Road Section. Asaphopsis sp. nov. and A. juneensis of Stait and Laurie (1980, fig. 3) and A. juneensis of Corbctt and Banks (1974) were available (including UTGD80995, 80999 , 81001, 81019, 81086, 96022, 96036, 96038, 96650, 96652, 98053, 98060, 98075, 122525, 122555-122561).
Diagnosis: Member of Asaphopsoides with parallcl-sided to anteriorly tapering glabella
ternal mould with its convexity reversed during or after burial; such specimens are known in the available collection. Therefore the short pleural ribs are actually moulds of the pleural furrows and this is clear on the proximal doublure. Although one of his pygidia shows at least 9 pygidial axial rings this is a notoriously variable feature likely to be greater on internal moulds. It seems most likely that, given the ubiquitous tectonic deformation of specimens from the Florentine Valley Formation, Asaphopsoides is represented in that formation by a single species. Certainly material available to us does not indicate otherwise.

Of foreign species A. villebrumi is very elose to the Tasmanian species but its preglabellar length appears (based on only two specimens figured by Thoral in 1935) to be less, its palpebral lobes are proportionally longer and the pygidium has different transaxial furrows and very slightly longer marginal spines. However, these are minor differences that may ultimately prove to be of less than specific signifieance. A. nakamurai has tiny palpebral lobes situated well forward and the pygidial marginal spines are situated well back (i.e. the fourth pleural furrow, if continued, reaches the margin well in front of the spine). A. annamensis and A. elegantulus are too poorly known for comparison. Of Chinese species, almost all are elearly distinguished by their long slender marginal spines but A. planispiniger appears very close to \mathcal{A}. florentinensis although the rear of the hypostome appears to have a slightly different configuration (Lu, 1975, pl. 26, fig. 20), pygidial pleural furrows extend aeross the border almost to the margin and the third rather than the fourth pleural furrow reaches the margin just behind the marginal spine (Lu in Lu et al., 1965, pl. 111, fig. 14).

A number of juvenile cranidia and pygidia are available but show no signifieant differences from the adults except perhaps they have more relief, more elevated palpebral lobes and furrows, and in at least one specimen the fifth pleural furrow reaches the margin just behind the spine. This may be interpreted as the final meraspid stage; as one more thoracie segment moves out into the thorax so the fourth furrow will be adjacent to the spine.

Family HARPEDIDAE Hawle \& Corda, 1847
Scotoharpes Lamont, 1948
Type species (by original designation): Scotoharpes domina Lamont, 1948 from the Upper Llandovery of Scotland.
Remarks: Despite the brief original description of the type species a detailed appraisal of that species, including illustration of the holotype is now available (Norford, 1973). Norford also recognised Selenoharpes Whittington, 1950 and Aristoharpes Whittington, 1950 as junior subjective synonyms of Scotoharpes. Although efforts to recognise stratigraphically useful generic morphotypes are laudable the relatively large collections of the Tasmanian species and of Australoharpes (Jell, 1985) suggesting that cephalic shape and development of alae are variable with growth make the generic concepts of a number of harpedid genera appear to be too typological in their definition. Accordingly we accept Norford's synonymy and assign the new Tasmanian species to Scotoharpes because of the close comparison in all observable features. The extent of the girder along the prolongation and occurrence of slightly coarser pits along the girder and the upper and lower rims are important features in common.

Scotoharpes lauriei sp. nov.

Plate 11, figures 4-14

Etymology: The species is named for John Laurie who was involved in the original biostratigraphic study of the Gordon River Road section and helped collect much of the material.
Material: Holotype UTGD121586, paratypes UTGD95922, $96007,96008,96010,121496$, and 122566-122569 all from NMVPL1602.
Diagnosis: Member of Scotoharpes with only very faint Ip furrow evident on glabella, an occipital node, very faint alae evident as extremcly weak depressions or not evident at all, with short posteriorly dirceted spine on posterior of prolongation.
Description: Cephalon subeircular to subovate, moderately convex. Glabella narrow (less than 20% of cephalic widih), and approximately half cephalic length (without prolongation),
broadly rounded anteriorly; palpebral lobes of moderate size, highly areuate laterally, situated at or behind glabellar midlength; pygidium with narrow tapering axis of at least seven rings and a long terminal piece which may represent several more rings; marginal spines small, inconspicuous, widely separated; posterior margin broadly rounded.

Description: Up to very large size (pygidia 80 mm wide known). Cranidia relatively flat except for convex glabella; glabella with lateral margins parallel-sided to slightly eonverging forward; glabellar anterior broadly rounded with deeper wide apodemal pits (fossulae) in the preglabellar furrow laterally making those parts of the furrow quite straight; three pairs of well impressed lateral glabellar furrows on the steep laterat slope of the glabetla, close to but not confluent with axial lurrow; occipital furrow distinet but shallow; occipital ring of uniform length, with low median node at midlength; preglabellar part of cranidium (considered to be greatly expanded anterior border as doublure extends back to front of glabella) flat with faint epiborder furrow evident on some individuals, with transverse ridge evident at inner margin of doublure (possibly compaction feature) on other specimens; palpebral lobe prominently bulging laterally, slightly raised above rest of cheek, relatively close to glabella; palpebral furrow not paralld to lateral margin of lobe but rather almost straight, nearly exsagittal diverging slightly posteriorly and rather shallow; faeial sutures anterior to eye diverging forward to converge again forward of the midlength of border in well rounded arch to meet the margin apparently not far from midline; posterior cephatic limb very wide, with long postcrior border elongating laterally, well impressed transverse border furrow shallowing and shortening laterally and short band of fixed cheek before faeial suture that is transverse from rear of palpebral lobe until it curves sharply to the posterior where it meets margin at right angles.

Hypostome large, more or less equidimensional median body markedly eonvex at anterior where it has almost vertical slope in the midline; border furrow very short anteriorly,
wider and deeper laterally, running prominently into well-impressed middle furrow, almost imperceptible aeross shoulder past short posterior tobe of median body, well impressed posterolaterally but shallowing posteromedially; border short and eontinuous aeross midline anteriorly, expanding laterally into large flat triangular wings, contracting to a narrow ridge near midlength of anterior lobe ol median body, expanding again posteriorly into a flat expansive shoulder approximately as wide as the anterior wing and tapering strongly into a short rim-like posterior border.

Pygidium relatively flat with only real eonvexity in axis, pleural areas sloping gently to margin with no border furrow impressed; axis straight-sided, tapering posteriorly, with well rounded posterior at inner edge of doublure, a considerable distanee from margin, with variable (i.e. between specimens and between internal and external surfaees) number of rings visible (6-12 in available material); transaxial furrows straight, weakly impressed but distinet becoming less so posteriorly, with only very weak apodemal depressions laterally away from the axial furrow; pleural area with at least 7 (somctimes a weak eighth) pleural furrows that recurve posteriorly approaehing the border and are almost exsagittal posteriorly; fourth pleural furrow if eontinued in regular eurve meets margin just behind the spine; border wide, not crossed by pleural furrows (may be an artefact of flattening after burial); margin smoothly rounded, with pair of short flat or weakly convex posterolateral spines, broadly rounded and sometimes with a pair of very wide short bulges symmetrically placed about the midline between the spines (pl. 10, figs 4, 7); doublure quite wide and ornamented with continuous parallel terrace lines most numerous near the inner edge.

Remarks: Every specimen observed is distorted to some degree and almost all previous observations have been made on internal moulds. Each of the features quoted by Kobayashi (1940) as distinguishing his Tasmanian speeimen from Etheridge's (1905) is greatly influenced by one of these faetors. Kobayashi's A. ? gracicostatus (1940, pl. 11, fig. 10) is almost eertainly an ex-
moderately convex, lapering gently forward to narrowly rounded anterior, with extremely faint Ip furrow the only glabellar furrow present. Axial furrow well impressed laterally but little more than a change of slope in front of the glabella, also shallower posteriorly just in front of the border furrow where alae are situated. Occipital furrow shallow with gentle anterior and posterior slopes into it. Occipital ring of uniform length, rising to the highest point at the posterior, with high median tubercle standing like a post on the anterior of the ring. Alae small and very subtly depressed if at all evident. Eye tubereles just behind anterior of glatbella, large and round, elevated almost to height of glabcllar rear; cye ridge transverse, straight, long and low in section, joining axial furrow but not crossing it just behind glabellar anterior; weak fossular depression in front of eye ridge. Preglabellar ficld and anterior cheek roll about equal in length, logether sloping very gently down to the brim, cheek roll of uniform width except posterolaterally where it is extended in both directions along the posterior margin into a triangular area. Girder prominent as a ventrally projecting ridge, meeting inner rim at about one-third of the distance from the posterior of the oceipital ring to the tip of the brim prolongation, represented on upper lamella by broad caecum from which issuc smaller diameter radial caeca that are separated immediately against the girder by pits of the same diameter as those elsewhere. Brim flat to genily concave, covered by radially arranged anastamosing caecal network, caeca separated by pits of fairly uniform size, pits against rim also of same size; brim prolongation tapers posteriorly as the outer rim curves adaxially towards the posterior, with spine of circular section on posterior extremity, including spine as long as axial length of ecphaton.

Thorax of 14 or more segments, tapering posteriorly; axis tapering markedly towards the posterior, just slightly narrower than width of cach pleuron.

Pygidium transverse, of low convexity; axis lapering markedly, of 7 rings and minute terminus situated some distance in front of border furrow; axial furrow not impressed, only a change of slope; pleural areas smooth except
for anterior border furrow, distinct articulating face developed; border furrow broad and shallow but distinet; border very narrow, tapering postcriorly, horizontal.

Remarks: Scotoharpes lanriei may be distinguished from S. domina by the shape of its prolongation, and its weak alar development; from S. latior (Poulsen, 1934) by its glabellar shape, weak alae and prominent girder; from S. vetustus Zhou \& Zhang, 1978 by the prominent alae of that species although that species is 100 poorly known for useful comparison; it differs from all other species of the genus in its weaker alae but resembles juvenile specimens of S. Iomu (Lane, 1972) (sec Norford, 1973, pl. 3, fig. 6) in this as well as most other features. This last resemblanec indicates its ancestral relationship to Lane's Silurian species.

Family PILEKIIDAE Sdzuy, 1955

Although Lane (1971) advocated inclusion of this group as a subfamily of the Cheiruridae we prefer to retain it as a separate family mainly on the basis of the type of thoracic pleural furrows and on the commonly four segments in the pygidium. This arrangement is also favoured to accommodate a number of phylogenetic possibilities that will be discussed in another paper (Jell, 1985).

Pilekiidae gen. et sp. nov.
Plate 12, figures 1-4
Material: Two cranidia (UTGD122570 and 122571) and two pygidia (UTGD122572 and 122573) all external moulds from NMVPL1601.

Description: Glabella almost as wide as long; tapering only slightly forward from widest point at furrow 1 p , with broadly rounded anterior, highly convex in anterior profile, with three pairs of lateral glabellar furrows; glabellar furrows wide, slit-like, almost transverse or directed back adaxially, dividing glabella into lobes of equal Iength except for the slightly longer frontal lobe; axial furrow well impressed, narrow, continuing forward as the preglabclar furrow without change; pregla-
bellar field absent; anterior border extremely short, convex, like a rope running across the front of the glabella, elongate a litule towards facial suture, curved back strongly around anterolateral corners of glabella; palpcbral lobe broad, short, at small angle to exsagittal line, meeting axial furrow just behind level of furrow 3 p, curving evenly back fairly close to the axis to near the level of furrow $1 p$, convex and uniform in section throughout; palpebral furrow well impressed, parallel to lobe and curving out around posterior of palpebral lobe; lixigena behind palpebral lobe as wide as base of glabella, bur quite narrow between palpebral lobes, sloping down strongly abaxially, with pitted ornament; facial suture proparian very short and curving adaxially in front of palpebral lobe, rumning transversely bchind palpebral lobe to meet lateral margin at about level of furrow 1 p ; sentral sutures unknown; posterior border conve. both in posterior profile and in section with the latter flattening out laterally, becoming elongate laterally and extended into apparently short (full extent not evident on only available specimen) fixigenal spine at the genal angle; posterior border furrow well impressed, short, of uniform crosssection laterally to beyond the genal angle, similar to the glabellar furrows in cross-section.

Hypostome, rostral plate and thorax not known.

Pygidium small, transverse; axis of four rings and small semicircular terminus reaching posterior margin; rings slightly longer towards posterior, ol unilorm lengih, separated by wellimpressed transaxial furrows becoming shallower towards the posterior; pleural arcas crossed by well-impressed pleural and interpleural furrows; interpleural furrows curved posteriorly and deeper towards margin; pleural furrows shallowing towards margin and not curved; posterior pleural band extended into short blunt free spine on each segment, turning sharply posteriorly at the base ol the spine; lourth segment with very weak pleural furrows, with its short spines enclosing the axial terminus laterally; all marginal spines directed posteriorly. Surface of cranidium and pygidium (except in furrows) covered with fine widelyspaced granules.

Remarks: This species is closely related to Pilekia but we consider that it will be found to represent a separate genus based on its less bulbous 1 p glabellar furrow, its lack ol a strong genal or fixigenal spine, the liny semicircular pygidial axial terminus, and the transverse pleural lurrows in Tront of posterior pleural bands that lurn sharply back at the base of the marginal spines. The combination of these features separates it from all those assigned 10 cither Pilekia Barton, 1915 or Parapilekia Kobayashi, 1934.

Pilekia Barton, 1915
Type species (by original designation): Cheirurus apollo Billings, 1860 .

Pilekia sp. nov.

Plate 12, figures 8-12

Material: UTGD95987, 95989, 96664, 122577. 122578 all from NMVPL1600.
Description: Glabella with widest point near anterior of lobe Ip or rear of lobe $2 p$, with well rounded anterior, with well impressed almosi transverse occipital lurrow becoming slightly longer medially and with lateral parts running forward from axial lurrow, with occipital ring only marginally longer than occipital furrow and shorter laterally with convex lateral profile rather than the flater profile medially, with ornament ol coarse tubercles except in furrows; lateral glabellar furrows well-impressed, weakly convex forward, becoming shallower shorter and directed posteriorly lowards the axis, with long flat bottoms near axial lurrow and steep almost vertical sides, with lurrow Ip reaching back almost to the occipital furrow and isolating a large prominent Ip lobe; lobes becoming progressively shorter forward with anterior lobe being quite short and subrhombic in shape with arcuate anterior; anterior border furrow short and deep; anterior border short, rising strongly lorward, of uniform length on cranidium; eye ridge rumning out and slightly back Irom axial furrow near level of micllength of lobe 3p, straight, convex in section; lixed cheeks widc, subtriangular, with strong rcticulate ormament ol caccal ridges separated by prominent pits and bearing sparsely scattered tubereles on top of the ridges; palpebral lobe
selatively small, curved posleriorly, defined by prominent furrow that extends along rear of eye ridge; posterior border furrow wellimpressed, becoming slightly longer abaxially, continuing around genal angle as slightly narrower lateral lurrow, beginning in axial lurrow at occipital furrow not at posterior margin; posterior border short near axial furrow, beeoming longer and flatter laterally, bearing strong posterolateratly direeted fixigenal spine (PI. 12, lig. 8b) some distance adaxial to the genal angle; course of facial suture not clear on any specimen.

Librigena, rostrum, hypostome, and thorax unknown.

Pygidium transverse to subsemicircular, with convex axis standing above pleural areas; axis of four rings and terminus; each ring of uniform length, fourth onty slightly shorter than lirst; terminus atmost twice as long as a ring, considerably narrower than fourth ring, reaching margin posteriorly, descending steeply to posterior; pleural area with well impressed pleural and interpleural furrows, tapering posteriorly, with plenral area of rourth segment absent; pleural furrows beginning near anterior of segment at axial furrow, running transversely in two anterior segments then curving a little to the posterior to linish in line with the anterior part of the marginal spine, ruming transversely across narrow third pleura towards the anterior part of the marginal spine; interpleural furrows transverse for most of their course belore turning stightly posteriorly abaxially and meeting margin belween marginal spines; four pairs of evenly spaced marginal spines present; first and second pairs ol marginal spines tapering evenly from base but quite long (about as long as pygidium), circular to stightly flattened in seetion; third marginal spine with parallel sides through the part preserved and inferted to be eonsiderably longer than others; fourth marginal spine shortest, almost exsagittal, widely separated from axiah terminus and hence from matching spine on other side; ornament on pygidium of tine sparsely seattered lubercles.
Remarks: The species taxobases are the different sized pygidial marginal spine and the fixigenal spine situated adaxially from the genal
angle. There is not sufficient material available to propose a new specific name but its novelty is not in doubt. Assignment to Pilekia is based in particular, on the enlarged $1 p$ lobes and the greatest width of the glabella being near the anterior of lobe $1 p$ but all other featnres are consistent with this assignment. Relative sizes of pygidial spines seem to separate this material Prom any deseribed species of Pilekia.

Family PLIOMERIDAE Raymond, 1913

Whittington (1961) removed the pilekiids from this family and noted that division of the remaining taxa into subfamilies was unwarranted. Nothing has happened during the intervening years to alter that view.

Protopliomerops Kobayashi, 1934

Type species (by original designation): Protopliomerops seisomensis Kobayashi, 1934 from the late Tremadoc Protopliomerops Zone at Saisho-ri, South Korea (Tomkol Shale of Kobayashi, 1966).
Remarks: This genus was diagnosed by Kobayashi (1934) and extensively discussed by Ross (1951) with additions to the diagnosis. The species deseribed below adds only an articulated thorax to the generic coneept so further diseussion is unnecessary.

Protopliomerops hamaxitus sp. nov

1 late 13, figures 1-14
1974 Cvbelopsis sp. Corbett \& Banks, pl. 2, figs 15, 16.
1980 ? Plomerina suhquadrata (Kobayashi); Stait \& Laurie, fig. 3, appendix 1.
Etymology: From Greek hamaxitos meaning highway; referring to type locality on a highway.
Material: Holotype UTGD122585, paratypes UTGD95886, 95999, 96003, 96625, 121491, and 122579-122587 all from NMVPLI602. Numerous other specimens from each of the localities indicated in the introduction were also available.

Diagnosis: Member of Protopliomerops with axial furrows diverging very weakly forward; lateral glabellar furrows slit-like, 3 p reaching axiat furrow at anterolateral corner of glabella; oceipital furrow with strong anterior curve medially over the axis: ocecpital ring without
node; palpebral lobe not inarkedly expanded, long extending back to level of Ip furrow; genal spines short; ornament over whole eephaton of fine pustules, check areas with numerous pits between a network ol ridges. Thorax of 12 segments; pleural tips spinose. curved slightly posteriorly. Pygidium with axis lapering strongly posteriorly, ol five rings and triangular lerminus drawn out to reach posterior margin; five pairs of marginal spines with tips well apart; anterior border very short.
Descripion: Small trilobite, tapering posteriorly throughout the axis and in the lateral spinose margin. Cephalon semieircular, moderately convex, proparian; glabella approximately 0.33 of cephalie width, widest anteriorly, with broadly rounded anterior, straight sides, and three pairs of lateral glabellar furrows; Ip furrow longest of three, angling backwards towards axis; $3 p$ furrow most oblique, meeting axial lurrow at or in fromt of the anterolateral corner of the glabella; occipital furrow swinging strongly forward near adaxial end of furrow 1 p , in an even curve across axis, deep, with U-shaped eross-section; oeeipital ring with slightly oblique posterior margin laterally becoming transverse medially, without node, elongate medially; anterior border short and eonvex medially, slighly patter and longer lateral to glabella; anterior border furrow short and slit-like medially, clongate lateral to the glabella in front of the palpebral ridge; palpebral ridge narrow but relatively long, continuing unehanged into the palpebral lobe; palpebral lobe not greatly expanded, swung baek strongly to be almost exsagittal, almost reaching back to $1 p$ furrow; facial suture rumning forward from palpebral lobe close to axial furrow only a short distance 10 margin, running almost transversely behind eye but curving back distally to meet the margin just in front of the genal angle; interocular cheeks very narrow; posterior border becoming elongate near genal angle, drawnout at genal angle into short spine that extends only slightly laterally but strongly posteriorly. Fixigena triangular, with wellimpressed border furrow, convex border and high curved doublure. Hypostome with prominent convex median body occupying most ol its area; anterior wings wide, tapering laterally,

Hattened in a plane at approximately 60° to the plane ol the main body of the hypostome; border furrows well impressed rumning into distinct median furrows very close to posterior: posterior lobe short but longer Han posterior border, isolated completely by median furrows; shoulder only slightly expanded; entire surface covered with line pustulose ornament.

Thoras of 12 segments; axis short, highly conven with very short articulating hatl ring, with srong bulbous apodemes laterally in anliculating lurrow; pleurac with very shorl anterior pleural bands not evident on mosi specimens (as they are conceated by the nevt anterior segment deep within the pleural finrrow); pleual liurrows well impressect, dividing the short low anterior plemal band from the long high posterior pleural band that occupies almost all the exposed part of the plema: plemal extremities are long, hollow, free spines Hat taper graduatly and curve posteriorly from the articulating line (elearly evictent on internal moulds (Pl . 10, lig. 10)); articulating lines converging posteriorly, with narrow distinet doublure beneath.

Pygidium semicircular, weakly couvex; axis of live rings of equal length, becoming progressively natrower posteriorly and a terminus; cerminus triangular, longer than wide, reaching posterior margin, mueh narrower than last axial ring, enclosed laterally by filth plentac, separated from fitits pleurate by very shallow lurrows; transaxial furrows deep, becoming shallower and shorter posteriorly, wakly consex anteriorly; articulating hall ring and anterion border extremely short and low, batter ol uniform lengelt; anterior pleural band visible low in lirst plental furrow ol some specimens; pleural hurows very deep, more posterior ones curving posteriorly, with litih pair exsagital to converging; posterior pleural band dominating pleural areas as high ridges extending beyond margin as large spines; marginal spines finishing with lips of successive spines well apart and shaply pointed, in live pairs of which second and third seem longest; all raised areas covered by pustulose ormament but lurrows smooth.
Remarks: The ornament, oceipital limrow, lack of occipital node, widely spaced tips of the
pygidial marginal spines and longer palpebral lobes distinguish P. hamaxitus from the type specics. Protopliomerops granulatus and P. punctatus both from Korea (Kobayashi, 1934, pl. 7, figs 2-5) may be distinguished by their pygidia having six pairs of marginal spines. The three species assigned to Protopliomerops by Ross (1951) from Utah may be distinguished by their expanded palpebral lobes and different combinations of other features in the pygidium. Protopliomerops rossi Harrington \& Leanza, 1957 may be distinguished by its glabellar shape, and the widely separated fifth pair of pygidial marginal spines without the discrete triangular terminus between them. Glabellar shape varies in the five illustrated internal moulds of cranidia to the same extent as in the Gordon Road collections so this may not be a distinguishing feature. In members of this family morphologs is so diflerent depending on whether internal moulds or external surfaces are used that P. rossi may ultimately prove to be synonymous with P. hamaxitus. Features most distinctive of P. hamaxilus seem to be its lack of an occipital node, long palpebrat lobes, five pairs of well spread pygidial marginal spines and almost no expression of antcrior pleural bands in plcural areas.

A complete morphogeny is not available but one juvenile pygidium plus posterior thorax (Pl. 13, lig. 4) does give some insight into growth of that part of the exoskeleton.

Protopliomerops sp. cf. I'. punctatus

 Kobayashi, 1934Plate 11, figures 1-3; plate 12, figures 5-7
Material: Three cranidia (UTGD122562-122564) and thrce pygidia (UTGD122574-122576) all from a single block of shale at NMVPL1602.

Remarks: The comparison of this material with Kobayashi's species is based almost exclusively on the pygidium because the tiny fragment of a cranidium assigned by Kobayashi, could scarcely be considered to provide an adequate basis for comparison. The six pairs of pygidial spines, the way the pleural ribs are close togcther and the structure of the axis are all significant features that are shared by P. punc-
tatus and this Tasmanian material. In fact there are no observable differences. Essential features of the cranidium are the almost isolated $1 p$ glabellar lobes, the almost transverse glabellar furrows with $3 p$ meeting the axial furrow behind the anterolateral corner of the glabella, the long palpebral lobe (or rather palpebroocular ridge), and short genal spine. These features do not compare with any known cranidia and certainly not with the short palpebral lobe of Kobayshi's P. punctatus. However, his representation does show transverse glabellar furrows with $3 p$ behind the antcrolateral glabellar corner. These cranidia may prove to have the features of P. punctatus when cranidia of that species are better known.

References

Angeli,, N. P., 1854. Patueontotogica Scandinavica. Part 2. Academiae Regiae Scientarium Suecanae. 21-92.

Banks, M. R. \& Burrett, C. F., 1980. A preliminary Ordovician biostratigraphy of Tasmania. J. geot. Soc. Aust. 26: 363-375.
Barton, D. C., 1915. A revision ol the Cheirurinae, with notes on their evolution. Wash. Unir. Stud. scient. Ser. 3: 101-152.
Berg, R. R. \& Ross, R. J., 1959. Trilobites from the Peerless and Manitou Formations, Colorado. J. Pateont. 33: 106-119.
Bergeron, J., 1889. Etude geologique du Mussif ancien situe au sucd du plateau centrat. These, Paris, 1-362.
Bergeron, J., 1895. Noles paleontologiques. Butl. soc. geot. France 23: 465-484.
Bulings, E., 1859. Description of some new species of trilubiles from the lower and middle Silurian of Canada. Can. Naturatisl 4: 367-383.
Billings, E., 1860 . On some new species of lossils from the limestone near Point Levi opposile Quebec. Can. Naturatist 5: 301-324.
Broggir. W. C., 1896. Uber die Verbreitung EutomaNiobe Fauna (der Ceratopygenkalkfauna) in Europe. Nyt Magazin for Naturvidenskaberne 35: 16-24.
Callaway, C., 1877. On a new area of Upper Cambrian rocks in south Shropshire, with a description of a new fauna. Quart. J. geol. Soc. Lond. 33: 652-671.
Chang, W. T., 1949. Ordovician trilobites from Kaiping, Hebci and the Qaidam Basin. Butt. Geol. Soc. China 29: 110-125.
Cilugaeva. M. N. \& Apollonov, M. K., 1982. The Cambrian-Ordovician boundary in the Batyrbaisai section, Malyi Karatau Range, Kazakhitan, USSR. In The Cambrian-Ordovician boundary: sections, fossil distributions, and correlations. M. G. Bassett \& W. T. Dean, eds, National Museum of Wales, Geological Scries, No. 3, Cardiff, 77-85.
Coopl:r, R. A. \& Stewart, I., 1979. The Tremadoc graptolite sequence of Lancefield, Victoria. Palaeontotogy 22: 767-797.

Corbett, k. D. \& Banks, M. R., 1974. Ordovician stratigraphy of the Florentine Synclinorium, southwest Tasmania, Pap. Proc. R. Soc. Tasm. 107: 207-238.
Courtessolle, R., Pillet, J. \& Vizcaino, D., 1981. Nonvelles donnees sur la biostratigraphie de l'Ordovicien inferieur de la Montagne Noire. Revision des Taihnngshaniidae, de Megistaspis, (Ekeraspis) et d'Asaphopsoides (Trilobites). Memoire de la Societe des Etudes Scientifique de l'Aude, Carcassonne, 1-32.
Endo, R., 1935. Additional fossils from the Canadian and Ordovician rocks of the southern part of Manchoukuo, Sci. Rep. Tohoku Imp. Univ., ser. 2: 16(4).
Etheridge, R. Jr., 1905. Trilobite remains collected in the Florentine Valley, west Tasmania, by Mr T. Stephens, \$1.A. Rec. Ausi. Mus. 5: 98-101.
Fortey, R. A. \& Peel. J. S., 1983. The anomalous bathyurid trilobite Ceratopeltis and its homeomorphs. Spec. Pap. Paleont. 30; 51-57.
Gobbett, D. J., 1960. A new species of trilobite Irom the lower Oslobreen Limestone. Geol. Mag. 107: 457-460
Gortani, M., 1934. Fossill Ordoviciani del Caracorum. Spedizious ital. De Filippi Nel l'Himalaya, Caracorum e Turkestan Cinese (1913-1914), ser. 2, vol. 5.
Harrington, H. J. \& Leanza, A. Fı, 1957. Ordovician urilobites of Argentina. Spec. Publ. Univ, Kans, Dept. Geol. 1: 1-276.
Harrington, H. J., Moore, R. C. \& Stubblefleid, C. J., 1959. Morphological terms applied to Trilobita. In Treatise on Invertebrate Palaeontology Part 0 . Arthropoda 1, R. C. Moore, ed., Geol. Soc. Amer. \& Univ. Kansas Press, Lawrence, Kansas, 117-126
Harrington, H. J., et al., 1959. Systematic descriptions. In Treatise on Invertebrate Palaeontology, Part O. Arthropoda 1. R. C. Moore, ed., Geol. Soc. Amer. \& Univ. Kansas Press, Lawrence, Kansas, 170-540.
Henningsmoen, G.. 1959. Rare Tremadocran trilobites from Norway. Norsh. geol. Tidskr. 39: 153-174.
Histze, L. J., 1953. Lower Ordovician trilobites front western Utah and eastern Nevada. Bull. Utah gcol. Miner. Surw. 48: 1-249.
Hsu, S. C. \& MA, C. T., 1948. The Ichang Formation and the Ichangian fauna. Inst. Geol. Acad. Sinica No. 8.
Hupe, P., 1953. Classification des trilobites. Annales Paleontologie 39: 61-168.
Hupe, P., 1955. Classification des trilobites. Annales Paleontologie 41: 91-325.
Jell, P. A., 1985. Tremadoc trilobites of the Digger Island Formation, Waratah Bay, Victoria. Mem. natn. Ifus. lict. This volume.
Kobayashi, T., 1934. The Cambro-Ordovician formations and faunas of South Chosen. Palaeontology. Part 2. Lower Ordovician faunas. J. Fac. Sci. Tokyo Univ. ser. 2. 3: 521-585.
Kobayasht, T., 1935. On the Kainella fauna of the basal Ordovician age found in Argentina. Jap. J. Geol. Geogr. 12: 59-67.
Kobarashi, T., 1936. Three contributions the Cambro-Ordovician faunas. Jap. J. Geol. Geog. 13: 163-184.
Kobayashi, T., 1940. Lower Ordovician fossils from Junee, Tasmania. Pap. Proc. R. Soc. Tasm. 1939: 61-66.
Kobayashi, T., 1955. The Ordovician lossils of the McKay Group in British Columbia, western Canada, with a note on the early Ordovician palaeogeography. I. Fiac. Sci. Tohyo Univ. ser. 2. 9: 355-493.
Kubayashi, $\dot{\mathrm{T}}$., 1960. The Cambro-Ordovician formations
and faunas of South Korea, Part 6. Palacontology 5. J. Fac. Sci. Tokyo Univ., ser. 2, 12: 217-275.

Kobayash1, T., 1966. The Cambro-Ordovician formations and faunas of South Korea. Part 10. Stratigraphy of the Chosen Group in Korea and south Manchuria. J. Fac. Sci. Tokyo Univ., ser. 2, 16: 209-311.
Lamont, A., 1948. Scottish dragons. Quarry Manager's Jonrnal 31: 531-535.
LaNE, P. D., 1971. British Cheirnridae (Trilobita). Palaeontolographical Society Monograph, London, 95p.
LaNE, P. D., 1972. New trilobites from the Silurian of north-east Greenland, with a note on trilobite faunas in pure limestones. Palaeontology 15: 336-364.
Laurie, J. R., 1980. Early Ordovician orthide brachopods from southern Tasmania. Alcheringa 4: 11-23.
LegG, D. P., 1978. Ordovician biostratigraphy of the Canning Basin, Western Australia. Alcheringa 2: 321-334.
Lewts, A. N., 1940. Geology of the Tyenna Valley. Pap. Proc, R. Soc. Tasm. 1939: 33-60.
L1, SHEN-CH1, 1978. Trilobita. In Atlas of the palaeonrology of the southwest regions. Sichuan Volume. I. Sinion to Devonian. Sichuan Geological Bureau, ed., Geology Press, Peking, 179-283.
Lu, Yav-Hao, 1975. Ordovician trilobite faunas of central and southwestern China. Palaeont. Sinica, new series B, 11: 1-463. 1965.
Lu, Yax-hao, Chang, W'. T., Chu, Chao-Ling, Chien, Yhyuan \& Hilang. L. W., 1965. Fossils of China. Chinese trilobites. Science Press, Peking, 766 p.
Lle, Yan-Hao, Che, Chac-Ling, Chien, Yilyuan, Zhol, Zhi-Y't, Chen, Jun-Yuan, Lit, Cheng-Wu, Yu, Wen, ChFs, Nu \& Ku, HaN-Ku1, 1976. Ordovician biostratigraphy and palaeozoogeography of China. Mem. Nanjing Inst. Geol. Palaeont. 7: 1-83, pls 1-14.
Mansery, H., 1920. Nouselle contributions a l'Elude des faunas Palaeozoiques et Mesozoiques. Mem. Ser. Geol. Indochine 7(1): 6-21.
Miller, J. F., Taylor, N. E., Stitt, J. H., EthingIon, R. L., Hintze, L. F. \& Taylor, J. F., 1982. Potential Cambrian-Ordovician boundary stratotype sections in the western United States. In The Cambrian-Ordovician boundar:: sections, fossil distributions, and correlations, M. G. Bassett \& W. T Dean, eds, National Museum of Wales, Geological Series No. 3, Cardiff, 155-180.
Norford, B. S., 1973. Lower Silurian species of the trilobite Scotoharpes from Canada and northwestern Greenland. Bull. geol. Surv. Can. 222: 9-34.
OWEAS, R. M., FORTEY, R. A., COpe, J. C. W., Rushton, A. W. A. \& Bassett, M1. G., 1982. Tremadoc fatinas from the Carmarthen District, South W'ales. Geol. Mag. 119: 1-38.
Poulsex, C., 1934. The Silurian faunas of north Greenland, 1, the fauna of the Cape Schuchert Formation. Medd, om Gronland 72: 1-46.
Rammond, P. E., 1913. A review of the species which have been referted to the genus Bathyurus. Bull. Fictoria mern. M/us. 1: 51-80.
Raymond, P. E., 1924. New Upper Cambrian and Lower Ordovician irilobites from Vermont. Proc. Boston Soc. Nat. Hist. 37: 389-466.
Raymond, P. E., 1937. Uppet Cambrian and Lower Ordovician Trilobita and Ostracoda from V'ermont. Bull. geol. Soc. Amer. 48: 1079-1146.
Ross, R. J., 1951. Stratigraphy of the Garden City Formation northeastern Utah, and its trilobite faunas. Bu/l Peabody Mus. nat. Hist. 6: 1-161.

Rozova, A. V., 1968. Biostratigraphy and trilobites of the Upper Cambrian and Lower Ordovician of the northwest Siberian Platform. Trudy Inst. Geol. i Geofiz. 36: 1-196.
Salter, J. W., 1866. A monograph of the British trilobites. Palacontographical Society Monograph, London, pp. 129-176.
Sdzuy, K., 1955. Die Fauna der Leimitz-Schicfer (Tremadoc). Abh. senckenb. naturf. Gesell. 492: 1-74.
Sheng, S. F., 1934. Lower Ordovician trilubile fauna of Chekiang. Palaeont. Sinica, ser. B, 3(1).
Shergold, J. H., 1975. Late Cambrian and Early Ordovician trilobites from the Burke River Structural Belt, western Queensland, Australia. Bull. Bur. Miner. Resour. Geol. Geophys Aust. 153: 1-251.
Siait, B. \& Laurif, J. R., 1980. Lithostratigraphy and biostratigraphy of the Florentine Valley Formation in the Tim Shea area, south-west Tasmania. Pap. Proc: R. Soc. Tasm. 114: 201-207.

Sun, Y. C., 1931. Ordovician trilobites of central and southern China. Palaeont. Sinica, ser. B, 7(1).
Thoral, M., 1935. Contribution a l'Etude paleontologique de l'Ordovicien inferieur de la Montagne Noire et revision sommaire de la faune cambrienne de la Montagne Noire. Montpellier, 1-362.
Tiernvik, T. E., 1956. On the Early Ordovician of Sweden: stratigraphy and fauna. Geol. Inst. Univ. Uppsala 36: 107-284.
Vogdes, A. W., 1925. Palaeozoic crustacea, part 2 -a list of genera and subgenera of the Trilobita. Trans. San Diego Soc. Nat. Hist. 4: 87-115.
Walcort, C. D., 1914. Dikelocephalus and other gencra of the Dikelocephalinae. Smithson. misc. Collns 57: 345-412.
Wazcott, C. D., 1925. Cambrian and Ozarkian trilobites. Smithson. misc. Collns 75: 61-146.
Webby, B. D.. Vandenberg, A. H. M., Cooper, R. A., Banks, M. R., Burrett, C. F., Hendfreson, R. A., Clarkson, P. D., Hughes, C., Laurif, J. E., Stait, B., Thomson, M. R. A. \& Webers, G., 1981. Oıdovician System in Australia, New Zealand and Antarctica. IUGS Publ. 6: 1-64.
Whittington, H. B., 1950. A monograph of the British trilobites of the Family Harpidae. Palaeontographical Society Monograph, London, 1-55.
Whittington, H. B., 1961. Middle Ordovician Pliomeridae (Trilobita) from Nevada, New York, Quebec, Newfoundland. J. Paleort. 35: 911-922.
Xia, 1978. Asaphopsis ovoideus sp. nov. In Sinian to Permian stratigraphy and palaeontology of the eastern Shanxi area. Hubei Geological Bureau, ed., Geology Press, Peking, p. 168, pl. 32, figs 13, 14.
Yin, Gong-Sheng \& Li Shen-Chi, 1978. Class Tiilobita. in Atlas of the palaeontology of the southwestern regions of China. Guizhou Stratigraphy and Palaeontology Work Team, ed., v. 1, Cambrian-Devonian, 385-594.
Zhou, Tan-Mei, Liu, !-Jen, Mong Sung, \& Sun, Tzeng-WA, 1977. Trilobita. In Atlas of the palaeontology of south central China. 1. Early Palaeozoic volume. Hubei institute of Geological Sciences, Hubej Geological Bureau, Kwantung Geological Bureau, Honan Geological Bureau, Hunan Geological Bureau, Kwangsi Geological Bureau, eds, Geology Press, Peking, 104-266.
Zhou, Zhi-Yi \& Zhang, Jin-Lin, 1978. CambrianOrdovician boundary of the Tangshan area with descriptions of the related trilobite fauna. Acta Palaeont. Sin. 17: 1-28.

Explanation of Plates

PLATE 1

Hystricurus timsheaensis sp. nov. All from NMVPL1600.
Figure 1. Latex cast of damaged cranidium distorted by compression in the longitudinal direction; slowing wide palpebral lobe and deep lossulae, UTGD122500, $\times 2$.
Higure 2. Internal mould of tho damaged cranidia lying one on top of the other with axes at right angles so that distortion is clearly shown by difference between the two, UTGDI22501 and 122502 , $\times 2$.
Figure 3. Latex cast of damaged cranidium showing postcrior expansion of palpebral lobe, the coarse ornament and a feu terrace lines near the anterior margin, UTGD122503, $\times 4$.
Figure 4. Latex cast from only slightly disarticulated, damaged holotype specimen including cranidium, part of thorax, and pygidium, UTGD95867, $\times 2$.

Figure 5. Latex cast of part of cranidium (UTGD122504) and free cheek (UTGD122505) showing ornament completely subdued by distortion in shale after burial, and lateral compression of cheek border near anterior, $\times 3$.

I igure 6. Latex cast from complete free cheek except for incomplete genal spine showing visual surface, caecal network, terrace lines on border and distinct eye socle, UTGD122506, $\times 6$.

Figure 7. Latex cast from damaged external mould of pygidium in posterolateral view showing strongly disided axial terminus and high marginal band with well developed terrace lines, UTGD122507, $\times 3.5$.

Figure 8. Latex cast of damaged pygidium (UTGD 122508) and cranidium (UTGD122509), $\times 3$.
Figure 9. Latex cast of damaged pygidium in posterolateral view showing narrow doublure, marginal terrace lines, and strong medial tubercle on anterior axial ring, UTGD $122510, \times 5$.

Figure 10. Latex cast of pygidium with ornament and furrows subducd by tectonic distortion, UTGD122511, $\times 4$.
Figure 11. Latex cast of pygidium showing axial tubercles, extent of pleural furrows, posteromedial marginal indentation, and extent of axis, UTGD122512, $\times 4$.

Figure 12. Latex cast of damaged fixigena (UTGD 122513) and cranidium (UTGD122514), showing the tuberculate ornament, upturned palpebral lobe, and anterior structure, $\times 2.5$.

Figure 13. Internal mould of distorted pygidium showing furrows on pleural areas and divided axial terminus, UTGD122515, $\times 5$.

Figure 14. Latex cast of damaged pygidium showing marginal band in posterior oblique view, UTGD96680, $\times 3.5$.

Figure 15. Internal mould of pygidium (UTGD122516) and librigena (UTGD122517) with external mould of another librigena in upper right (UTGD122518) $\times 2$.

PLATE 2

Hystricurus lewisi (Kobayashi, 1940).
Figure 1. Latex cast of damaged cranidium from NMVPL182 showing flattened anterior border (exaggerating length of border) and wide palpebral lobes, UTGD96055, $\times 5$.

Figure 2. Latex cast of damaged flattened holotype cranidium from limonite encrusted external mould (obliterating surface ornament), Z151, $\times 6$.

Figure 3. Latex cast of an incomplete cranidium from the type locality, Kobayashi's original material, Z995 ($=$ B1423),$\times 4$.

Figure 4. Internal mould of damaged and distorted cranidium from the type locality of H . lewisi (holotype of Tasmanaspis lonyus Kiobayashi, 1940). Z150, $\times 4$.

Figure 5. Latex cast of small cranidium from NMVPL1601, showing long preglabellar field and wide palpebral lobes, UTGD $122519 . \times 4$; A. anterior oblique view; \mathbf{B}, dorsal view.

Figure 6. Latex cast of small cranidium from NMVPL 182. UTGD122520. $\times 3$.

Figure 7. Latex cast of small cranidium irom NMVPL182 crushed down on right anterolateral corner so that palpebral lobe appears narrow because most of its width is turned directly down and preglabellar field appears short because it it depressed and compressed with border strongly upturned, UTGD122521, $\times 3.5$.
Figure 8. Latex cast of cranidium from 5 Road, showing ornament, anterior course of facial suture, and palpebral lobes, UTGD81()67, $\times 3$.

Figure 9. Internal mould of librigena from NMVPL182 showing coarse ornament and antcrior extent of doublure, UTGDI22522, $\times 3.5$.

Figure 10. Internal mould (A) and latex cast (B) ol small librigena from NMVPL183, in dorsal view, showing difference of ornament on inner and outer surfaces of exoskeletons, terrace lines on the border and anterior extension of border, UTGD $122523, \times 5$.
Figuse 11. Internal mould of a cranidium from NMVPL1602, UTGD81062, $\times 3.5$.
Figure 12. Latex cast of damaged librigena from NMVPL.1602, in latcral oblique view showing visual surface and eye socle, UTGD96710, $\times 5$.

Figure 13. Latex cast of damaged cranidium from 5 Road showing wide palpebral lobes and posterior cephalic limb, UTGD81049, $\times 5$.

Figure 14. Latex cast of librigena with most of genal spinc missing from NMVPL182, in lateral oblique view, showing border furrow shallowing at rear and high eye socle, UTGD98084, $\times 4$.

Figure 15. Latex cast of two cranidia and a pygidium with a cranidium of Asaphopsoides florentinensis lying between the cranidia of this species, from NMVPL182, showing the different morphologies produced by the different orientation relative to the slatey cleavage-compression has been in the direction up and down the page so that the upper cranidium is compressed laterally whereas lower one is compressed in sagittal line, also showing weak 1 p furrow, UTGD122524, 122525, 122526 and 122527 Irom top to bottom respectively, $\times 3$.

PLATE 3

Figures 1-7. Tanybregma tasmaniensis sp. nov. All from NMVPL1600.

Figure 1. Latex cast of damaged librigena showing visual surface, anterior extent of doublure and denticles on adaxial margin of genal spine, UTGD $122528, \times 4$.

Figure 2. Internal mould of distorted cranidium, UTGD96674, $\times 4$.

Figure 3. Internal mould of holotype cranidium showing long preglabellar length, palpebral lobes, $1 p$ furrou, and course of facial suture, UTGD 95983, $\times 3.5$.

Figure 4. Latex cast of librigena in ventral view showing terrace lines on the doublure, ridge running down genal spine, and denticles on genal spine, UTGD96676, $\times 2$ 。

Figure 5. Latex cast of incomplete librigena showing extent of doublure forward of facial suture and width of doublure, UTGD122529, $\times 3$.

Figure 6. Internal mould of librigena showing visual surface, course of facial suture, and mould of ridge on underside of genal spine, UTGD $122530, \times 4$.

Figure 7. Internal mould of damaged cranidium showing caecal network on preglabellar area, concave border, and posterior limb, UTGD122531, $\times 2$.
ligures 8, 11, 12, 14. Hystricurus sp. cf. H. robustus Ross, 1951

Figure 8. Latex cast of pygidium from NMVPL1602 showing axial structure, extent of furrows on pleurae, and occasional eoarse tubercles on axial rings and pleural ribs, UTGD95885, $\times 6$.

Figure 11. Internal mould of pygidium from NMVPL 1602 showing finc tubcreles representing pits on the inner surface of exoskeleton, and the width of the doublure, UTGD $122532, \times 3$.

Figure 12. Latex cast of part of thorax and posterior of cranidium from Adams Falls, UTGD96040, $\times 4$.
Figure 14. Internal mould of pygidium from Adams Falls, UTGD96620, $\times 3$.

Figures 9, 10, 13. Hystricurus lewisi Kobayashi, 1940 all from NMVPLI82.

Figure 9. Latex cast of incomplete pygidium showing tim-like anteriorly tapering border, the strong ridge at the geniculation, and steeply sloping outer part ol pleura, UTGD $122533, \times 4$.

Higute 10. Internal mould of pygidium showing doublure and structure of axis, UTGD96049, $\times 7$.

Figure 13. Latex cast of slightly distorted pygidium show. ing pleural and interpleural furrows, and sharp geniculation, UTGD98080, $\times 7$.

PLATE 4

Figures 1-7. Hystricurus sp. cf. H. robustus Ross, 1951.
Figure 1. Internal mould of damaged cranidium from NMVPL 1602 showing coarse ornament and long posterior limb, UTGD122534, $\times 4$.

Figure 2. Internal mould of librigena from Adams Falls showing the visual surface, doublure, and deffected genal spinc, UTGD95913, $\times 3$.

Figure 3. Internal mould of damaged cranidium from Adams Falls showing extremely short preglabellar field, UTGD96626, $\times 2.5$.

Figure 4. Internal mould of cranidium from Adams Falls showing palpebral lobe and posterior course of facial suture, UTGD96603, $\times 3.5$.

Figure 5. Latex cast of librigena from NMVPL1602 showing terrace lines on the border, eyc socle and collapsed visual surface, UTGD98114, $\times 4$.

Figure 6. Latex cast of damaged cranidium from Adams Falls showing palpebral lobes, extremely short preglabellar field with median furrow, and posteriorly shallowing axial furrow, UTGD $96708, \times 3$.

Figure 7. Latex cast of small librigena from Adams Falls showing visual surface, eye socle, shallowing in border furrow just in front of genal angle, and coarse ornament, UTGD122588, $\times 7$.

Figures 8-11. Chosenia adamsensis sp. nov. All from Adams Falls.

Figure 8. Latex cast of damaged pygidium showing terrace lines on marginal spines and axial structure, UTGD95175, $\times 4$.

Figure 9. Latex cast of eranidium showing long glabellar lurrows and marginal terrace lines on anterior border, UTGD96027, $\times 3$.
Iigure 10. Latex cast ol incomplete pygidium showing curved marginal spine with lerrace lines, ridges on pleural ribs in position of interplcural furrows, and marginal spine coming from third pygidial scgment, UTGD96611, ×2.

Figure 11. Internal mould of pygidium distorted by shortening, showing apodemal pits in transaxial furrows, anterior border furrow reaching margin in front of marginal spine, and doublure, UTGD96602, $\times 3$.
Figure 12. Asaphellus etheridgei sp. nov. Internal mould ol' pygidium from Adams I-alls showing terrace lines on doublure, apodemal pits in transaxial furrows, and axial shape, UTGD96032, $\times 1.5$.
Figure 13. Nileidae gen. et sp. indet. Internal mould of pygidium and five thoracic segments from Adams falls, UTGD96030, $\times 2.5$. (NOT DESCRIBED).

PLATE 5

Chosenia adamsensis sp . nov. All from Adams Falls except Fig. I which is from NMVPL 1602.

Figure 1. Latex cast of damaged holotype cranidium showing long glabellar furrows and ridge crossing axial furrow from anterolateral corner of glabella, UTGD122535, $\times 2$.
Figure 2. Latex cast of damaged librigena showing terrace lines, and coursc of border furrow, UTGD95945, $\times 4$.
Figure 3, Internal mould (A) and latex casi from external mould (B) showing sparse tuberculate ornament, strong caecum from anterolateral corner of glabella, ten thoracic segments with wide pleural spines, and characteristic long anterior border lurrow on pygidium, UTGD96023, $\times 3$.
Figure 4. Latex cast of damaged cranidium showing anterior marginal terrace lines, posterior palpebral lobe, and tuberculate ornament on glabellar lobes, UTGD96029, $\times 4.5$.
Figure 5. Latex cast of librigena showing structure of border, eye socle, terrace lines and genal spine. UTGD96646, $\times 5$.

Figure 6. Internal mould of damaged cranidium, UTGD95927. $\times 3$.

Figure 7. Internal mould of damaged laterally compressed pygidium showing long marginal, spine arising from second pygidial segment, anterior border furrow running to margin forward of marginal spine, and axis of six segments plus terminus, UTGD95942, $\times 2$.
Figure 8. Latex cast of damaged, sagitally compressed pygidium showing marginal spines with longitudinal terrace lines and issuing from third pygidial segment, seven axial rings plus terminus, and interpleural furrows, UTGD $96644, \times 3$.

Figure 9. Internal mould of diagonally distorted pygidium, UTGD96025, $\times 2$.

Figure 10. Internal mould of sagitally compressed pygidium showing terrace lines on doublure, axis of seven rings and terminus, and marginal spine issuing from third segment, UTGD96637. $\times 2$.

PLATE 6
Asaphellus sp. cf. A. trinodosus Chang, 1949. All from NMIVPL1602

Figure 1. Latex cast from incomplete external mould of eranidium showing palpebral lobe and course of facial suture, UTGD98111, $\times 2$.

Figure 2. Latex cast from incomplete external mould of hypostome showing concentric terrace lines, median furrows, shape of the median body, and slight medial expansion of the posterior border, UTGD98137. $\times 4.5$.

Figure 3. Latex cast from external mould of holotype cranidium showing weakly defined glabella, palpebral lobes, facial suture barely diverging in front of palpebral lobes, and faint node posteromedially on glabella, UTGD96005, $\times 2$.

Figure 4. Latex cast of ventral surface of librigena showing terrace lines on wide convex doublure, UTGD95917, $\times 1$.

Figure 5. Latex cast of incomplete librigena showing eye socle, short genal spine, and linc terrace lines near margin, UTGD95895, $\times 2$.

Figure 6. Latex eası of damaged cranidium showing weak axial furrow, and palpebral lobes, UTGD96002, $\times 3$ (thoracic segment of some other trilobite impressed through the cranidium just forward of palpebral lobes).

Figure 7. Lalex cast of damaged librigena showing anterior termination of doublure in sagittal suture, eye socle, and marginal terrace lines, UTGD98117. $\times 2$.

Figure 8. Internal mould of pygidium showing widc doublure, low eonvexity and terrace lines on the doublure (on righ1), UTGD122536, $\times 1.5$.

Figure 9. Internal mould of damaged cranidium showing axial furrow, palpebral lobes, and posterior course of facial suture, UTGDI22537, $\times 1.5$.

Figure 10. Latex cast of right posterolateral part of hypostome showing deep median furrow, terrace lines on the border with narrow upturned margin and short posterior margin, UTGD $122538, \times 2$.

Figure 11. Internal mould of pygidium showting axial structure including transverse apodemes, plcural and interpleural lurrows and wide doublure with terrace lines, UTGD95877, $\times 2$.

Figure 12. Latex cast of pygidium and librigena, UTGD95915 and 122539, respectively, $\times 1.5$.

PLATE 7
Megistaspis (Ekeraspis) euclides (Walcont, 1925). All from NMVPLI601.

Figure 1. Internal mould of damaged cranidium, UTGDI22540, $\times 1.5$.

Figure 2. Latex cast of incomplete cranidium showing course ol the facial suture, palpebral lobe, and low convexity of the cranidium, UTGD122541, $\times 2$.

Fïgure 3. Latex cast of ventral side of librigena showing long genal spine with ridge running down it, wide doublure with terrace lines, and sagittal suture terminating doublure anteriorly, UTGD $122542, \times 1$.

Figure 4. Internal mould of cranidium, UTGDI22543, $\times 1$.
ligure 5 . Internal mould of incomplete librigena showing eye socle, facial suture and wide anterior doublure, UTGD98095, $\times 2$.

Iigure 6. Latcy cast from incomplete external mould of hypostome showing dorsally projecting anterior wings, terrace lines, and deep median furrow, UTGD122544, $\times 2$.

1-igure 7. Latev cast of damaged librigena showing eye socle, flat border, and course of facial sulure, UTGDI22545, $\times 1.5$.

Figure 8. Latex cast form incomplete external mould of cranidium showing extent of glabella, antertor part of facial suture and its most posterior part, UTGD122546, $\times 2$.

Figure 9. Internal mould of small pygidium showing long posterior spine, UTGD122547, $\times 2$.

Figure 10. Latex cast of posterior part of hypostome showing terrace lines on the shouldet and short posterion lobe of median body, UTGDI22548, $\times 4$.

Figure 11. Latex cast ol large pygidium showing axial and pleural structure, UTGD95994, $\times 1$.

Figure 12. Latex cast of damaged hypostome, UTGD $122549, \times 3$.

1-igure 13. Latex cast of sagitally compressed pygidium showing shorter posterior spine, UTGD98102, $\times 3$.

1igure 14. Latex cast ol small distorted pygidium, UTGD122550, $\times 3$.

Figure 15. Internal mould of laterally compressed pygidium plus posterior five thoracic segments showing pygidial doublure with terrace lines, and style ol thoracic segment, UTGDI22551, $\times 2$.

PLATE 8
Dikelokephalina asiatica Kobayashi, 1934. All liom NMVP'1600.
Figgure 1. Latex cast of small liagment of a librigena probably referable to this species showing low cye socle and ormanent of subtic terrace lines on genal field, UTGDI22552, $\times 2$.
ligure 2. Internal mould of damaged laterally compressed pygidium showing axial structure and posterior spines, UTGiD95981, $\times 3$.
liguace 3. Internal mould of pygidium, UTGD95979, $\times 3$.

Figure 4. Latex cassis from internal on venual (Λ) and external (B) moulds of damaged pygidium showing subule terrace lines on horder region, width of doublure and its terrace lines, posterior notch in inner edge of doublure and posterior spines, UIGJ96689, $\times 2.5$.

Ifgure 5. Internal mould of damaged pygidium, UIG1095982, $\times 3$.

Higure 6. latex cast of damaged cranidiun showing palpebral lohe, glabellar lurrows and fine tuberculate orniment, U'T GD95980, $\times 3$.

Figure 7. Internal mould of cranidium showing palpebral lobes, glabellar furrows, occipital mode and preglabellat stlucture, UTCiDI22553. \times 3. (Cranidium of Tanybregma tasmaniensis sp, nov. in upper Ieft U'TGDI22554).

Figure 8. Internal mould of damaged eranidium, UTGD95978, $\times 3$.

PLATE 9

Asaphopsoides florentinensis (Etheridge, 1905). All from
NMVI'LI 82 except Figures 5, 6, 8, 11 which come lrom 5 Road.
ligure I. Internal mould of juvenile cranidium, UTGDI22555, $\times 7$.

Figure 2. Internal mould of juvenile cranidium larger than previous one, UTGD98053, $\times 5$.

I-igure 3. Internal mould ol damaged hypostome, UTGDI22556, $\times 4$.

Figure 4. Latex cast from incomplete external mould of cranidium showing line terrace lines on anterior border, UTGD81086, $\times 2.5$.
ligure 5. Latex cast of hypostome showing ornament, median furrow, pits in posterior border lurrow, and short posterior border, UTGD81019. $\times 6$.

Figure 6. Latex cast of incomplete cranidium and librigena, UTGD8099) and 122557 respeclively, $\times 3$.

Figure 7. Internal mould of cranidiun showing posterolateral limbs, and fossulac, UTGD $122558, \times 2.5$.
1.igure 8. Latex cast of right pleura of thoracic segment showing ornament, facel, and pointed lip, UTGD122559, > 3 .

I'igure 9. Latex cast of damaged sagitally compressed cranidiun showing glabellar furrows, lerrace lines on anterior border, palpebral lobes, and occipital node, UTGD98075, $\times 5$.

Figure 10. Latex cast of damaged eranidium diagonally distorted, UT (iDI22560, $\times 3$.

Figure 11. Internal mould of damaged cranidium, UTGD80999, $\times 3$.

PIATE 10

Asuphopsoides floreminensis (Etheridge, 1905).
ligure 1. Internal mould ol laterally compressed holotype pygidium lirom near 'The Gap' in the Florentine Valley AMF9232, $\times 2$.
ligure 2. Internal mould of incomplete librigena from Adams Falls howing broad genal spine and wide doublure, UTGD96022, $\times 4$.

Figure 3. Latex cast of joined librigenae and anterior border of cranidium from 5 Road showing lacial suture, genal spines and border lurrow, UTGD81001, $\times 1.5$.

Figure 4. Internal mould of laterally compressed pygidium from Adams Falls showing wide doublure with terrace lines and pleural and inlerpleural furrows, UTGD96036, $\times 3$.

Figure 5. Lattex cast (\triangle) and internal mould (B) of pydigium and ninc thoracic segments from NMVPLI82 showing increasing curvature of pleural spines posteriorly, UTGD96652, $\times 3$.
Figure 6. Latex cast of ventral side of librigena from 5 Road showing sagitual suture terminating doublure anteriorly, wide doublure and course of facial suture, UTGD96650, $\times 2$.
ligure 7. Internal mould ol damaged pygidium from NMVILLE 82 showing axial structure and broadly excavated margin posteromedially between marginal spines, UTGD98060, $\times 4$.

Figure 8. Internal mould of laterally compressed pygidium from Adams Falls showing terrace lines on doublure and posterior marginal spines, UTGD80995, $\times 3$.

Figure 9. Latex cast of pygidium from NMVPLI82, showing axial and pleural structure, UTGD 122561, $\times 2.5$.

Figure 10. Internal mould of damaged pygidiun from Adams Falls showing widih of doublure with terrace lines and posterior marginal spines, UT(il)96038, $\times 2.5$.

PLATE 11

Figures 1-3. Protopliomerops sp. ©i. P. puncratus Kobayashi, 1934. All from NMVPI 1602.

Figure 1. Latex cast from incomplete evernal mould of cranidium, UTGD122562, $\times 6$.

Figure 2. Intcral mould of cranidimm and ameriot thoracic segments of enrolled individual showing transverse glabellar furrows, UTGD $122563, \times 8$.

Figure 3. Internal mould of two cranidia showing transverse (lower) and oblique (upper) glabellar lurrows, UTGD122564 and $122565 . \times 5$.

Figures 4-14. Scoloharpes lawriei sp. now. All from NMVI'L.1602.

Figure 4. Internal mould of damaged wanidium, UTGD95922. $\times 9$.

Figure 5. Latex east from incomplete extermal mould of cranidium showing glabellar turrows, occipital node, cyes, and cye ridges. UTC iD 121496 , $\times 11$. (Broken ofl just outside girder).

Figure 6. Latex cast of ventral sufface of incomplete cranidium showing cxtent of girder, projecting rim at matgin, innet extent of donblure and caecal network, U'1 (i1)98116, $\times 6$.

Pigure 7. Latex cast from damaged external mould of crathdium with three thoracic segments alllached showing spine on tip of prolong:tion, eyes and caceal nelwork, U1 (iD122566, $\times 4$.

Figute 8. Internal mould of damaged cranidium showing extent of girder, UTGD $122567, \times 10$.
1.igure 9. Latex casi from damaged external mould of holotype specimen, UTCiD $121586, \times 6$.
Figure 10. Latex cast from damaged external mould of smal! cranidium in anterolateral oblique view showing marginal rim and eye, UT (il) 22568 , $\times 7$.
Figure 11. Latex cast from damaged external mould of small cranidium showing spine on lip of prolongation, UTGD96007, $\times 10$.

Figure 12. Latex cast of dorsal (A) and ventral (13) surfaces ol damaged cranidium showing caecal network and girder, UTGD $122569, \times 5$ and $\times 6$ respectively.
Figure 13. Internal mould ol pygidium and posterior thoracic segnent showing lapering axis, narrow border and smooth pleural areas, UT(iD96010, -9 .
ligure 14. Internal mould of a cranidium, U'T(iD)96008, $\times 8$.

PI.AIE: 12
Figures 1-4. Pilekiidac gen. el sp. nov. liom NMVI'I.1601.
Figure 1. Later cast of damaged eranidimm in amerior (A), anterolateral obligue (B), and dorsal (C) views, UTCiD122570, $\times 3, \times 3$ and $\times 5$, icspec: lively.
Figure 2. Latex cast of dimaged cramidium, U'l(il) $122571, \times 5$.

Figure 3. Latex cast ol pygidiun showing olenal and inlerpteural furrows and marginal spines, UTGi) $122572, \times 6$.

I igatc 4. 1 atex cast of pygidium in clorsal (A) and left litteral oblicque (B) vicws, U'I (i1) 22573, $\times 7$.

- تigures 5-7. Prolopliomerops sp. ©f. I', munctans Kobayashi, 1934. Irom NMVPI 1602.
ligure 5. I ates cast of pygidion showing six marginal spines on lelt side, UTGD)122574, $\times 10$.
Ifgure 6. Latex cast of pygidium showing sin matginal spines on right side, U1G1)122575, $\times 6$.
1 ighme 7. Latex cint of pygidium showing six marginal spines on both sides. U'I (il) $122576, \times 8$.

I igutes 8-12. Pilekia sp. nov. All Irom NMVP'I600.
Figure x. fincomal mould of sagillilly compressed cramdium showing prominent ip lobes and stoong genal spine (delailed in (B) where its exlemal mould is visible), UT(iD) $22577, \times 2.5$.
ligute 9. Lates east of ineomplete and distorted cranidium showing pilted ornament of check and hature of palpebral lobe, UTGi)96604, $\times 2$.

I igure 10. I atex cast of damaged eramidimm showing ornament and glabellat furrows, U'f(ib)122578, $\times 3$.
Figure 11 . Intermal mould of damaged eamidimm showing genal spinc, glibella and ornament, UT(i) $95987, \times 2$.

1-igute 12. Internal mould of damaged holotype pygidimm showing lour manginal spines ol different sizes, interpleural fumows, and omament, UT(ii) $95984, \times 4$.

PLATE 1.3
Protopliomerons hamaxitus sp. nov. All fiom NMVI'I. 1602.
ligure 1. I.atex cast of cranidium showing genal spines, U'T GI) $95999, ~>8$.

Figure 2. Latex cast of pygidium showing five paits of well separited margina! spines and pustulose ornaincin, UT(iD95886, $\times 10$.

Figure 3. Latex cast of hypostome showing anterior wings and pustulose ornament, UTGD96003, $\times 20$.

Figure 4. Latex cast of rear of thorax and pygidium of juvenile individual, UTGD122579, $\times 12$.

Figure 5. Latex cast of sagittally compressed cranidium showing glabellar furrows, palpebral lobe, and punctate ornament on cheek, UTGD121491, $\times 8$.

Figure 6. Latex cast of damaged cranidium with librigena in place, UTGD122580, $\times 11$.

Figure 7. Latex cast of damaged cranidium and thorax, UTGD122581, $\times 8$.
Figure 8. Latex cast of hypostome showing ornament and faint median furrow, UTGD $122582, \times 8$.

Figure 9. Latex cast of damaged complete specimen showing 13 segments, UTGD96625, $\times 10$.

Figure 10. Internal mould of damaged individual showing position of hypostome, free pleural spines and strong thoracic apodemes in articulating furrows, UTGD122583, $\times 9$.

Figure 11. Latex cast of two cranidia, UTGD95884 (upper) and 122584 (lower), $\times 6$.
Figure 12. Latex cast of damaged holotype cranidium showing ornament, glabellar furrows, Ip joining occipital furrow, and short anterior border, UTGD $122585, \times 9$.

Figure 13. Latex cast of pygidium with large quadrate axial terminus, UTGD $122586, \times 8$.
Figure 14. Latex cast of damaged cranidium and thorax, UTGD122587, $\times 6$.

[^0]: Dikelocephalus florentinensis Etheridge, 1905 (Early Arenig; Tasmania) see below.
 [= Asaphopsis juneensis Kobayashi, 1940a and A. (?) gracicostatus Kobayashi, 19401
 Asaphopsis nakarnurai Kobayashi, 1936 (Early Ordovician; Doten, South Korea).
 Asaphus elegantulus Gortani, 1934 (Early Ordovician; Chisil Pass, Karakorum).

